• Title/Summary/Keyword: Confocal Image

Search Result 102, Processing Time 0.405 seconds

Study of Morphology and Physical Properties of Indian Mallow(Abutilon avicennae Gaertner) Fibers by CLSM( I ) (CLSM을 이용한 어저귀 섬유의 형태학적 특성과 물성 연구(제1보) -인피 및 목질부 섬유를 이용한 한지제조-)

  • 정선화;조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.61-66
    • /
    • 2002
  • This study was carried out to investigate sheet properties of Indian mallow hanji, made by different pulping methods such as alkali and sulfomethylated pulpings, and different stock compositions, various mixing ratios of bast fiber and woody core fibers. Effect of morphological properties of pulp stocks on the sheet formation and their optical properties were also evaluated using an image analyzer and confocal laser scanning microscope(CLSM). In addition, the effect of fiber distribution index(FDI), which was calculated based on the image in a z-direction of a sheet from CLSM, on the sheet properties of Indian mallow hanji was discussed. The proposed FDI had a good correlation with various properties of paper, such as apparent density, opacity, tear index, breaking length and zero-span tensile strength. Especially, sulfomethylated pulp sheets'FDI was higher than alkali pulp sheets.

Real-time Fluorescence Lifetime Imaging Microscopy Implementation by Analog Mean-Delay Method through Parallel Data Processing

  • Kim, Jayul;Ryu, Jiheun;Gweon, Daegab
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.6-13
    • /
    • 2016
  • Fluorescence lifetime imaging microscopy (FLIM) has been considered an effective technique to investigate chemical properties of the specimens, especially of biological samples. Despite of this advantageous trait, researchers in this field have had difficulties applying FLIM to their systems because acquiring an image using FLIM consumes too much time. Although analog mean-delay (AMD) method was introduced to enhance the imaging speed of commonly used FLIM based on time-correlated single photon counting (TCSPC), a real-time image reconstruction using AMD method has not been implemented due to its data processing obstacles. In this paper, we introduce a real-time image restoration of AMD-FLIM through fast parallel data processing by using Threading Building Blocks (TBB; Intel) and octa-core processor (i7-5960x; Intel). Frame rate of 3.8 frames per second was achieved in $1,024{\times}1,024$ resolution with over 4 million lifetime determinations per second and measurement error within 10%. This image acquisition speed is 184 times faster than that of single-channel TCSPC and 9.2 times faster than that of 8-channel TCSPC (state-of-art photon counting rate of 80 million counts per second) with the same lifetime accuracy of 10% and the same pixel resolution.

Development of HCS(High Contents Screening) Software Using Open Source Library (오픈 소스 라이브러리를 활용한 HCS 소프트웨어 개발)

  • Na, Ye Ji;Ho, Jong Gab;Lee, Sang Joon;Min, Se Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.267-272
    • /
    • 2016
  • Microscope cell image is an important indicator for obtaining the biological information in a bio-informatics fields. Since human observers have been examining the cell image with microscope, a lot of time and high concentration are required to analyze cell images. Furthermore, It is difficult for the human eye to quantify objectively features in cell images. In this study, we developed HCS algorithm for automatic analysis of cell image using an OpenCV library. HCS algorithm contains the cell image preprocessing, cell counting, cell cycle and mitotic index analysis algorithm. We used human cancer cell (MKN-28) obtained by the confocal laser microscope for image analysis. We compare the value of cell counting to imageJ and to a professional observer to evaluate our algorithm performance. The experimental results showed that the average accuracy of our algorithm is 99.7%.

Fluorescent Method for Observing Intravascular Bonghan Duct (형광염색을 이용한 혈관내봉한관의 관찰)

  • Lee, Byung-Cheon;Baik, Ku-Youn;Johng, Hyeon-Min;Sung, Baeck-Kyoung;Soh, Kyung-Soon;Kang, Dae-In;Soh, Kwang-Sup
    • Journal of Pharmacopuncture
    • /
    • v.8 no.3
    • /
    • pp.5-9
    • /
    • 2005
  • Observation of intra-vascular threadlike structures in the blood vessels of rats is reported with the images by differential interference contrast microscope, and fluorescence inverted microscope of the acridine-orange stained samples. The confocal microscope image and the hematoxylin-eosin staining revealed the distinctive pattern of nuclei distribution that clearly discerned the threadlike structure from fibrin, capillary, small venule, arteriole, or lymph vessel. Physiological function of the intra-vascular thread in connection with acupuncture is discussed. Especially, this threadlike duct can be a circulation path for herb-liquid flow, which may provide the scientific mechanism for therapeutic effect of herbal acupuncture.

A Slice Information Based Labeling Algorithm for 3-D Volume Data (Slice 정보에 기반한 3차원 볼륨 데이터의 레이블링 알고리즘)

  • 최익환;최현주;이병일;최흥국
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.922-928
    • /
    • 2004
  • We propose a new 3 dimensional labeling method based on slice information for the volume data. This method is named SIL (Slice Information based Labeling). Compare to the conventional algorithms, it has advantages that the use of memory is efficient and it Is possible to combine with a variety of 2 dimensional labeling algorithms for finding an appropriate labeling algorithm to its application. In this study, we applied SIL to confocal microscopy images of cervix cancer cell and compared the results of labeling. According to the measurement, we found that the speed of Sd combined with, CCCL (Contour based Connected Component Labeling) is almost 2 times higher than that of other methods. In conclusion, considering that the performance of labeling depends on a kind of image, we obtained that the proposed method provide better result for the confocal microscopy cell volume data.

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.

Bonding effects of cleaning protocols and time-point of acid etching on dentin impregnated with endodontic sealer

  • Tatiane Miranda Manzoli;Joissi Ferrari Zaniboni;Joao Felipe Besegato;Flavia Angelica Guiotti;Andrea Abi Rached Dantas;Milton Carlos Kuga
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.2
    • /
    • pp.21.1-21.11
    • /
    • 2022
  • Objectives: This study aimed to investigate the bonding effects of cleaning protocols on dentin impregnated with endodontic sealer residues using ethanol (E) or xylol (X). The effects of dentin acid etching immediately (I) or 7 days (P) after cleaning were also evaluated. For bonding to dentin, universal adhesive (Scotchbond Universal; 3M ESPE) was used. The persistence of sealer residues, hybrid layer formation and microshear bond strength were the performed analysis. Materials and Methods: One hundred and twenty bovine dentin specimens were allocated into 4 groups (n = 10): G1 (E+I); G2 (X+I); G3 (E+P); and G4 (X+P). The persistence of sealer residues was evaluated by SEM. Confocal laser scanning microscopy images were taken to measure the formed hybrid layer using the Image J program. For microshear bond strength, 4 resin composite cylinders were placed over the dentin after the cleaning protocols. ANOVA followed by Tukey test and Kruskal-Wallis followed by Dunn test were used for parametric and non-parametric data, respectively (α = 5%). Results: G2 and G4 groups showed a lower persistence of residues (p < 0.05) and thicker hybrid layer than the other groups (p < 0.05). No bond strength differences among all groups were observed (p > 0.05). Conclusions: Dentin cleaning using xylol, regardless of the time-point of acid etching, provided lower persistence of residues over the surface and thicker hybrid layer. However, the bond strength of the universal adhesive system in etch-and-rinse strategy was not influenced by the cleaning protocols or time-point of acid etching.

Analysis of a micro-processed sample surface using SCM and AFM (공초점현미경과 원자현미경을 이용한 초정밀 가공된 시료 표면의 영상측정)

  • Kim Jong-Bae;Bae Han-Sung;Kim Kyeong-Ho;Nam Gi-Jung;Kwon Nam-Ic
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.577-580
    • /
    • 2005
  • Surface quality of a micro-processed sample with laser has been investigated by using of scanning confocal microscope(SCM) and atomic force microscope(AFM). Samples are bump electrodes and ITO glass of LCD module used in a mobile phone and a wafer surface scribed by UV laser. A image of $140\times120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a x-axis and y-axis are 1kHz and 1Hz, respectively. AFM is able to measure correctly hight and width of ITO and scribing depth and width of a wafer with a resolution less than 300 . However, the scan speed is slow and it is difficult to distinguish a surface composed of different nm kinds of materials. Results show that SCM is preferable to obtain a image of a sample composed of different kinds of material than AFM because the intensity of a reflected light from surface is different from each material.

  • PDF

Analysis of a processed sample surface using SCM and AFM (공초점현미경과 원자현미경을 이용한 가공된 시료 표면의 형상측정)

  • Bae Han-Sung;Kim Kyeong-Ho;Moon Seong-Wook;Nam Gi-Jung;Kwon Nam-Ic;Kim Jong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.52-59
    • /
    • 2006
  • Surface qualities of a micro-processed sample with a pulse laser have been investigated by making use of scanning confocal microscope(SCM) and atomic force microscope(AFM). Samples are bump electrodes and ITO glass of LCD module used in a mobile phone and a wafer surface scribed by UV laser. A image of $140{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a x-axis and y-axis are 1kHz and 1Hz, respectively. AFM is able to correctly measure the hight and width of ITO, and scribing depth and width of a wafer with a resolution less than 300nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. Results show that SCM is preferable to obtain a image of a sample composed of different kinds of material than AFM because the intensity of a reflected light from the surface is different for each material.

New Diagnostic Techniques in Cancer of the Pharynx and Esophagus (인두암과 식도암의 새로운 진단내시경)

  • Cho, Joo Young;Cho, Won Young
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • The diagnosis and treatment of early gastrointestinal cancers is the gastroenterologists' mission because of national cancer screening program in South Korea. The detection of early cancers is emphasized, because these were previously treated with surgical treatment can be currently cured with endoscopic treatment. Gastroenterologists who achieved at least on some level can make an exact diagnosis regardless of what type of endoscopy, but generally, there are some required conditions for an optimal diagnosis. First, clinically important lesions have to be detected easily. Second, the border and morphology of lesions have to be characterized easily. Third, lesions have to be diagnosed exactly. Precancers and early cancers are often subtle and can pose a challenge to gastroenterologists to visualize using standard white light endoscopy. The use of dye solutions aids the diagnosis of early gastrointestinal cancers, however, it is a quite cumbersome to use dye solutions all the time and the solution often bothers the exact observation by pooling into the depression or ulceration of the lesion. To overcome this weakness, newer endoscopes are now developed so called "image enhanced endoscopy" using optical and/or electronic methods such as narrow band imaging (NBI), autofluorescence imaging (AFI), i-scan, flexible spectral imaging color enhancement (FICE) and confocal endomicroscopy (CLE).

  • PDF