Analysis of a processed sample surface using SCM and AFM

공초점현미경과 원자현미경을 이용한 가공된 시료 표면의 형상측정

  • 배한성 (고등기술연구원 레이저초정밀공정팀) ;
  • 김경호 (고등기술연구원 레이저초정밀공정팀) ;
  • 문성욱 (고등기술연구원 레이저초정밀공정팀) ;
  • 남기중 (고등기술연구원 레이저초정밀공정팀) ;
  • 권남익 (한국외대 물리학과) ;
  • 김종배 (고등기술연구원 레이저초정밀공정팀)
  • Published : 2006.04.01

Abstract

Surface qualities of a micro-processed sample with a pulse laser have been investigated by making use of scanning confocal microscope(SCM) and atomic force microscope(AFM). Samples are bump electrodes and ITO glass of LCD module used in a mobile phone and a wafer surface scribed by UV laser. A image of $140{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a x-axis and y-axis are 1kHz and 1Hz, respectively. AFM is able to correctly measure the hight and width of ITO, and scribing depth and width of a wafer with a resolution less than 300nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. Results show that SCM is preferable to obtain a image of a sample composed of different kinds of material than AFM because the intensity of a reflected light from the surface is different for each material.

Keywords

References

  1. Higgins, T. V., 'Microscopes probe the imperceptible,' Laser Focus World, Vol. 31, No.3, PP. 89-95, 1995
  2. Wilson, T. ed., 'Confocal Microscopy,' Acadenic Press, London, 1990
  3. Kimura, S. and Munakata, C., 'Three-dimensional optical transfer function for the fluorescent scanning optical microscope with a slit,' Appl. Opt, Vol. 29, No.7, pp. 1004-1007, 1990 https://doi.org/10.1364/AO.29.001004
  4. Lee, J. S. and Kwon, Namic, 'Scanning confocal microscope using a semiconductor laser,' Applied physics of Korea, Vol. 9, No.4, pp. 440-443, 1996
  5. Yoo, S. J. and Kwon, Namic, 'Scanning confocal microscope using a quad-detector,' Journal of the Optical Society of Korea, Vol. 8, No.2, pp. 165-168, 1997
  6. Kim, K. S. and Kwon, Namic, 'The study property on the michelson interferometric microscopy,' Journal of the Optical Society of Korea, Vol. 10, No.5, pp. 369-372, 1999
  7. Kim, J. B., Ryu, K. H., Park, D. S., Noh, J. E. and Kwon, Namic, 'Scanning confocal microscope by oscillation of an optical fiber,' Journal of the Optical Society of Korea, Vol. 14, No. 1, pp. 80-84, 2003 https://doi.org/10.3807/KJOP.2003.14.1.080
  8. Wilson, T., 'Optical Sectioning in Confocal Fluorescent Microscopes,' J. Microsc, Vol. 154, pp 143-156, 1989 https://doi.org/10.1111/j.1365-2818.1989.tb00577.x
  9. Karrai, Khaled, Tiemann, Ingo, 'Interfacial shear force microscopy,' Physical Review B, Vol. 62, No. 19, pp. 13174-13181, 2000 https://doi.org/10.1103/PhysRevB.62.13174
  10. Robert, D. Grober, Jason, Acimovic, 'Fundamental limits to force detection using quartz tuning forks,' Rev. Sci. Instrum, pp. 2776-2780, 2000 https://doi.org/10.1063/1.1150691
  11. Kramer, A., Segura, J. M., 'A cryogenic scanning near-field optical microscope with shear-force gapwidth control,' Rev. Sci. Instrum, Vol. 73, No. 8, 2002 https://doi.org/10.1063/1.1491028
  12. Adelmann, Ch., Hetzler, J., 'Experiments on the depolarization near-field scanning optical microscope,' Appl. Phys. Lett, Vol. 74, No.2, pp. 179-181, 1999 https://doi.org/10.1063/1.122997