• Title/Summary/Keyword: Confining pressure effect

Search Result 121, Processing Time 0.026 seconds

Soil Plugging Behavior of Open -ended Pile for Different Installation Methods (말뚝의 설치 방법에 따른 관내토의 폐색 거동)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.25-36
    • /
    • 1995
  • A specially designed model open -ended pile, which was composed of inner tube and outer tube, wry driven in the pressure chamber by two diffenent intallation methods, that is, impact -driving and vibratory driving, and static compression loading test was done for that pile. Through the measurement of bearing capacities in the separated resisting parts of open -ended pile, bearing mechanism of open-ended pile and soil plugging behaviors for different installation methods were studied. It appears that 20% out of soil plugging force of impact -driven pile was developed during driving, while the rest was developed during static compression loading and t.he magnitude of confining pressure applied to the chamber did not affect soil plugging behavior. Also. it appears that, soil plugging force of vibratory pile was not developed during driving, while it was developed weakly as about 0.5~0.7 times as that of impact pile during static compression loading. and the confining pressure of pressure rhamber had an effect on the soil plugging. In the ultimate loading condition unit soil plugging force did not approach to the failure condition.

  • PDF

Multi-level Analysis of Prefinitely Strainely concrete materials (대변형률이 발생한 콘크리트 재료의 다수준 해석)

  • 최재혁;송하원;김장호;박상순;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.405-410
    • /
    • 2000
  • Multi-level (macro-level, meso-level, and micro-level) mechanism of prefinitely strained concrete materials os studied The multi-level analysis explains the additional quasibrittle concrete material ductility that comes from lateral confinement and their multi-level interaction mechanisms. The so-called "upgraded tube-squash test" is used to achieve 50% axial strain and over 70 degree of deviatoric strain of quasibrittle concrete materials under extremely high pressure without producing visible cracks. In the micro-level analysis, the variations of hydration rte, micropores, and hydrate phased are analyzed. In the meso-level analysis, mesocracks (the initial invisible cracks) at the interfaces between aggregates and cement paste matrices are studied. The high confining effect in the specimen on the meso-level cracks is also studied. In the macro-level analysis, the physical behavior of prefinitely strained concrete materials is studied. The co-relationships of the results from the three distinct levels of analyses based in various prestraining (0%, 15%, 35%, and 50%) are studied. For the extremely deformed or strained concrete problems, multi-level analysis will be used to explain the unclear and unstudied mechanism of concrete materials, The multi-level analysis can provide us with valuable insights that can explain the additional ductility and confining effect in concrete. concrete.

  • PDF

Cyclic behavior of RT-cement treated marine clay subjected to low and high loading frequencies

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Mohamad, Hisham;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • The weakening and softening behavior of soft clay subjected to cyclic loading due to the build-up of excess pore water pressure is well-known. During the design stage of the foundation of highways and coastal high-rise buildings, it is important to study the mechanical behavior of marine soils under cyclic loading as they undergo greater settlement during cyclic loading than under static loading. Therefore, this research evaluates the cyclic stress-strain and shear strength of untreated and treated marine clay under the effects of wind, earthquake, and traffic loadings. A series of laboratory stress-controlled cyclic triaxial tests have been conducted on both untreated and treated marine clay using different effective confining pressures and a frequency of 0.5 and 1.0 Hz. In addition, treated samples were cured for 28 and 90 days and tested under a frequency of 2.0 Hz. The results revealed significant differences in the performance of treated marine clay samples than that of untreated samples under cyclic loading. The treated marine clay samples were able to stand up to 2000 loading cycles before failure, while untreated marine clay samples could not stand few loading cycles. The untreated marine clay displayed a higher permanent axial strain rate under cyclic loading than the treated clay due to the existence of new cementing compounds after the treatment with recycled tiles and low amount (2%) of cement. The effect of the effective confining pressure was found to be significant on untreated marine clay while its effect was not crucial for the treated samples cured for 90 days. Treated samples cured for 90 days performed better under cyclic loading than the ones cured for 28 days and this is due to the higher amount of cementitious compounds formed with time. The highest deformation was found at 0.5 Hz, which cannot be considered as a critical frequency since smaller frequencies were not used. Therefore, it is recommended to consider testing the treated marine clay using smaller frequencies than 0.5 Hz.

The Effect of Soil Water Retention Curves under Confining Stress on the Effective Stress in Variably Saturated Soils (구속응력에 따른 함수특성곡선이 변포화토의 유효응력에 미치는 효과)

  • Oh, Seboong;Lee, Young-Hu;Bae, Im-Soo;Kim, Sang-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.169-175
    • /
    • 2012
  • Soil water retention characteristics are influenced by factors of the confining stress and hysteresis in the variably saturated soil. In the description of effective stress based on hydraulic characteristics, the contribution of a matric suction to effective stress then varies with depth or is different between the processes of infiltration and evaporation. Unsaturated effective stress can be described based on suction stress characteristic curve, in which a representative soil water retention curve is required to evaluate. Pressure palate extractor tests under various confining stresses were performed and the hysteresis of drying and wetting process was also acquired. In the process of drying or wetting, a unique relationship has been estimated on the effective volumetric water content and the matric suction, which defines suction stress characteristic curve. In the unsaturated shear strength from triaxial tests, the suction stress and the effective stress were evaluated by matric suctions. The failure envelop by effective stress based on soil water retention characteristics was unique and the same as the saturated one. The measured suction stress from triaxial tests was similar to that from the soil water retention curve. Therefore it is verified that a representative soil water retention curve can be defined which is independent of the confining effect under wetting or drying process of the hysteresis.

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Karabash, Zuheir;Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.

Composition and Peinforcing Effect of Remolded Short Fiber Reinforced Clay (재성형된 단섬유 보강점토의 구성과 보강효과)

  • 박영곤;장병욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.87-95
    • /
    • 2000
  • A series of consolidated undrained triaxial compression testes were performed to increase field applications of soil admixtures mixed with short fiber. Kaolin clay and three types of fiber were selected and auto cutter was used to obtain reliable length of fibers. Remolded soil specimens were tested for obtaining the basic data to be applied to the reinforcement of soft clay, embankment or barrier and clay liner of wastes landfill etc. Conversion equations from weight to volume of clay mixed with short fiber are introduced and relationships between fiber content and fiber concentration are derived. It is found that reinforcing effect by aspect ratio and mixing ratio of short fiber decreases as confining pressure increases. The best efficient reinforcing effect is given at the aspect ratio of 80~120 and the fiber content of 1.2%~2.4% and the fiber diameter of 0.27mm.

  • PDF

A Study on the Characteristics of Unsaturated Discharge Capacity of Horizontal Drains (수평배수재의 불포화 통수특성 연구)

  • 장연수;박정순;박정용
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2003
  • To evaluate the effect of trapped air bubbles in horizontal drains on discharge capacity, unsaturated discharge capacity tests are carried out for four types of drains selected according to the size of section as well as the shape of core. Unsaturated discharge capacities with the elapse of time, the increase of confining pressures, and hydraulic gradients are examined and are compared with saturated discharge capacities. It is found that the unsaturated discharge capacities at a hydraulic gradient of 0.01 decreased by 17%~80% due to the remained air bubbles in the drains compared with the saturated discharge capacities. It is caused by the fact that the horizontal direction of water flow is not consistent with the direction of movement of floating air bubbles in case of horizontal drains. Especially, far the drain with filament shaped core, discharge capacities decreased significantly due to the difficulty in removing air bubbles.

Comparative study on the behavior of soil fills on rigid acrylic and flexible geotextile containers

  • Kim, Hyeong-Joo;Won, Myoung-Soo;Lee, Jang-Baek;Joo, Jong-Hoon;Jamin, Jay C.
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.243-259
    • /
    • 2015
  • Comparative study has been performed to investigate the behavior of dredged fills on rigid (Model 1) and flexible (Model 2) containers. The study was focused on the sedimentation of soil fills and the development of total stresses. Model 1 is made of an acrylic cylinder and Model two is a scale-size geotextile tube. Results indicate that for rigid containers, significant decrease of the sediment height is apparent during the dewatering process. On the other hand, because the geotextile is permeable, the water is gradually dissipated during the filling process on flexible containers. Hence, significant loss in the tube height is not apparent during the duration of the test. Pressure spikes are apparent on rigid containers during the filling process which can be attributed to the confining effect due to hydrostatic pressure. For the flexible containers, the pressure readings gradually increases with time during the filling process and normalize at the end on the filling stage. No pressure spikes were apparent due to the gradual dissipation of pore water pressure.

Study on Shear Strength Characteristic of Steel Particle-sand Mixture Influenced by Magnetic Force (자기력이 적용된 철가루 혼합 사질토의 전단강도특성 연구)

  • Cho, Joong-Ki;Chang, Pyeong-Wook;Kim, Seong-Pil;Heo, Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.87-92
    • /
    • 2007
  • Strain-stress behavior of soil is of importance in dealing with geo-techniques which relate to bearing capacity, slope stability, earth pressure and many geo-technical problems. So understanding mechanism of the behavior and reinforcing soil to the required state has been an issue for many years. This paper presents the possibility of magnetic force in enhancing shear strength. To analyze the reinforcing effect, triaxial compression tests were performed on two sets of steel-sand mixtures, one of which is influenced by permanent magnet, NdFeB. With magnetic force under 50 kPa confining pressure, maximum shear strengths increased according to steel percentages but under 100 kPa, no significant changes in maximum shear strengths occurred. Therefore the analysis by Mohr's circles indicates that magnetic force converts the shearing characteristics of sand into those of clay.