• Title/Summary/Keyword: Confined concrete.

Search Result 494, Processing Time 0.026 seconds

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(I): Focused on the Compressive Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(I): 압축부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.39-46
    • /
    • 2022
  • As the limit state design method is applied as the design method of reinforced concrete structure, the ultimate state is considered when analyses or designing. In fact, when the reinforced concrete member is bent, there is a confining effect by stirrup, but the material curve of unconfined concretes applied when designing. In this study, to evaluate the suitability of the confined concrete model for flexural members, a 4-point bending test was conducted on RC simple beam with a double-reinforced rectangular cross-section, and the behavior of the member after yield was analyzed in detail using image processing method. For detailed analysis, the DIC method was adopted as an image analysis method, and the validity of DIC method was verified by comparing the measurement results with the LVDT. The distribution of the strain on the concrete surface calculated as a result of the DIC method could be obtained, and the average strain distribution of the cross-section was calculated. Using the average strain distribution, the stress distribution applied existing confined concrete model as a material curve could be derived. Through the comparison of the experimental results and the existing model application results, the suitability of the confined concrete model for RC flexural members having a rectangular cross-section was evaluated.

Axial Compressive Behavior of R/C Columns Confined with Carbon Fiber Sheets (탄소섬유쉬트로 횡구속된 RC기둥의 압축거동)

  • 신성우;이광수;심성택;송민성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.727-732
    • /
    • 2001
  • External Confinement of concrete in CFS enhances strength and ductility of concrete columns. This paper presents the test results on the study of reinforced concrete columns strengthened with carbon fiber sheets. The purpose of this research is to evaluate the CFS confinement characteristics of square reinforced concrete columns and the CFS efficiency. The tests were performed with different lateral reinforcement ratios, CFS reinforcement ratios and concrete strength. Test results were characterized according to maximum loads and lateral strain of CFS.

  • PDF

Reinforcement Efficiency of Concrete Compressive Members Confined with Carbon Fiber Sheet (탄소섬유쉬트로 횡보강된 콘크리트 압축부재의 보강성능에 관한 연구)

  • 성시문;강상용;임재형;이원호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.835-840
    • /
    • 2002
  • The purpose of this study is to analyze the reinforcement effect of the RC compressive member confined with carbon fiber sheets and to suggest better transverse confinement coefficient(k$_1$) than one's in the existing analysis equations. Showing amounts of CPS in terms of ratio of transverse reinforcement to cross-section, it comes to be possible to calculate the objective and quantitative reinforcement amounts and to estimate the overlapping length of CFS that can influence on all its confinement effect. The previous parameters were compared using the existing experimental test data, then analyzed for the merits and demerits of existing parameters through the coefficient of correlation(R). The proposed parameters were derived in such a way that established parameters and their combination were obtained from the analytical study and then determined by regression analysis using the previous test data.

  • PDF

Behaviour of volcanic pumice based thin walled composite filled columns under eccentric loading

  • Anwar Hossain, Khandaker M.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.63-81
    • /
    • 2003
  • This paper describes experimental and theoretical investigations on the behaviour of thin walled composite (TWC) filled columns under eccentric loading conditions. Details of the experimental investigation including description of the test columns, testing arrangements, failure modes, strain characteristics, load-deformation responses and effects of various geometric and material parameters are presented. The current paper also introduces the use and effect of lightweight Volcanic Pumice Concrete (VPC) in TWC columns. Analytical models for the design of columns under eccentric loading conditions have been developed taking into consideration the effect of confined concrete. The performance of design equations is validated through experimental results. The proposed design models are found to produce better results compared with available design procedures and Code based formulations. A computer program is developed to generate the interaction diagrams based on the proposed design equations that can be used for design purposes.

A Study on the Axial Behavior of the Concrete Cylinders Confined by Carbon Fiber Sheets (탄소섬유쉬트로 횡구속된 콘크리트 공시체의 압축 거동에 관한 연구)

  • Hwang, Jin-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • Recently the Carbon Fiber Sheet(CFS) is widely used for strengthening damaged RC structures. Strengthening compression members such as column can increase ductility and strength due to the confinement effect. In this experiment, the behavior of concrete cylinders confined by CFS was examined. The confinement pressure is increased linearly as axial stress is increased in low axial stress, and the confinement effect of CFS was rapidly developed after near maximum axial stress, thus axial strength and ductility was improved. As the ratio of CPS is increased, concrete cylinders failed due to local fracture of CFS. The confinement effect of circular section is more efficient than that of rectangular section. And significant improvement of axial strength, axial strain, transverse strain at failure is observed in circular section. This is because in rectangular section the local fracture of CFS near corner may be occured, thus the strain efficiency ratio must be considered for RC structures with CFS.

  • PDF

A Study on the Applicability of Railway Bridge Using Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 거더를 이용한 철도교의 적용성 고찰)

  • Kim Jung-Ho;Hwang Yoon-Gook;Park Kyung-Hoon;Choi Il-Yoon;Lee Sang-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1007-1013
    • /
    • 2004
  • A new type of girder named as Steel-Confined Prestressed Concrete Girder(SCP Girder) has been developed, which is composed of concrete, steel plate, and prestressing tendon. This girder may maximize structural advantages of these components, therefore it can be used to construct the middle or long span bridge with low-height girder. To verify the propriety of design, structural safety, and applicability of this girder, static load test was carried out. In this study, a design program was developed for practical design of railway bridge using SCP girder. And to verify the applicability of SCP girder to railway bridge, structural performance and economic efficiency based on the construction cost were compared with conventional railway bridges.

  • PDF

Study on the Crack Shape of Concrete Exterior Beam-Column Joints Confined by Carbon Sheet Tube (카본 시트 튜브로 구속된 콘크리트 외부 보-기둥 접합부의 균열 양상에 대한 연구)

  • 문영균;박진영;이경훈;홍원기;김희철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.199-204
    • /
    • 2003
  • The purpose of this study is to experimentally investigate the structural performance of concrete exterior beam-column joints confined by carbon sheet tube. Four specimens were produced with different numbers of carbon sheet and the other specimen was produced with reinforced concrete. A hydraulic dynamic actuator with 30tonf capacity was used to cyclic lateral loading test. The experimental results represent that the numbers of carbon sheet have an influence the load and displacement capacity. However, the bond length of carbon sheets for connecting beam and column has to be considered to improve the capacity of joint.

  • PDF

Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement

  • Chen, Zongping;Xu, Ruitian
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • The axial compression behavior of nine self-compacting concrete columns confined with CFRP-PVC spirals was studied. Three parameters of spiral reinforcement spacing, spiral reinforcement diameter and height diameter ratio were studied. The test results show that the CFRP strip and PVC tube are destroyed first, and the spiral reinforcement and longitudinal reinforcement yield. The results show that with the increase of spiral reinforcement spacing, the peak bearing capacity decreases, but the ductility increases; with the increase of spiral reinforcement diameter, the peak bearing capacity increases, but has little effect on ductility, and the specimen with the ratio of height to diameter of 7.5 has the best mechanical properties. According to the reasonable constitutive relation of material, the finite element model of axial compression is established. Based on the verified finite element model, the stress mechanism is revealed. Finally, the composite constraint model and bearing capacity calculation method are proposed.

An Experiment Study On the Stress-Strain Behavior of Concrete Columns Strengthened with Carbon Fiber Laminate (CFS보강 콘크리트 기둥부재의 응력-변형률 거동에 관한 실험적 연구)

  • 장일영;이상호;박훈규;나혁층
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.509-512
    • /
    • 1999
  • Recently, the Carbon Fiber Sheet(CFS) is widely used to structure. But the behavior of the concrete column which is strengthened with the CFS is not clearly defined yet. This study presents the result of experimental studies on the stress-strain behavior and the strengthening effect of laterally confined concrete by Carbon Fiber Sheets(CFS) subject to compression. In this experimental study, included three-parameters, which are the number of the sheets, the laminated angle of sheets, and concrete strength.

  • PDF