• 제목/요약/키워드: Confined concrete.

Search Result 491, Processing Time 0.022 seconds

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

The Experimental Study on Stress-Strain Relation of Confined Concrete with Different Transverse Reinforcements (횡철근 상세에 따른 횡구속 콘크리트의 응력-변형률에 관한 연구)

  • Jeong Hyeok Chang;Sun Chang Ho;Kim Ick Hyun;Lee Jong Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • In order to achieve target ductility the stress-strain relation of confined concrete is indispensible. In this study the specimens with different transverse reinforcement ratios were tested. The test results were compared with empirical equations and the characteristics of confinement effect were investigated.

  • PDF

Modeling Stress-Strain Relations for FRP-Confined Concrete (FRP로 구속된 콘크리트의 응력-변형률 해석모델)

  • Cho, Soon-Ho;Bang, Se-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.211-214
    • /
    • 2005
  • The analytical model capable of predicting stress vs. strain relations for circular FRP-confined concrete in a rational manner is proposed. The underlying idea is that the volumetric expansion due to progressive microcracking is an important measure of the extent of damage in the material microstructure. Various existing analytical models including the proposed were also investigated, and compared each other and with test results.

  • PDF

Characteristics of stress-strain relations of confined rectangular sectional concrete elements with various lateral reinforcement ratios and cross-ties (횡철근비와 cross-tie가 다른 횡구속 사각단면 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Park, Tae-Soo;Sun, Chang-Ho;Kim, Ick-Hyun;Lee, Jong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.89-92
    • /
    • 2006
  • In order to achieve target ductility the stress-strain relation of confined concrete is indispensible. In this study the specimens with different transverse reinforcement ratios were tested. The test results were compared with empirical equations and the characteristics of confinement effect were investigated.

  • PDF

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Preload effects on behaviour of FRP confined concrete: Experiment, mechanism and modified model

  • Cao, Vui Van
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.597-610
    • /
    • 2020
  • Stress-strain models of fibre reinforced polymer (FRP) confined concrete have been widely investigated; however, the existing load which is always supported by structures during the retrofitting phase, namely 'preload', has been neglected. Thus, preload effects should be clarified, providing insightful information for FRP retrofitting of structures with preload conditions. Towards this aim, experiments were performed for 27 cylinder concrete specimens with the diameter 150 mm and the height 300 mm. Three specimens were used to test the compressive strength of concrete to compute the preloads 20%, 30% and 40% of the average strength of these specimens. Other 24 specimens were divided into 2 groups; each group included 4 subgroups. Four subgroups were subjected to the above preloads and no preload, and were then wrapped by 2 FRP layers. Similar designation is applied to group 2, but wrapped by 3 FRP layers. All specimens were tested under axial compression to failure. Explosive failure is found to be the characteristic of specimens wrapped by FRP. Experimental results indicated that the preload decreases 12-13% the elastic and second stiffness of concrete specimens wrapped by 2 FRP layers. The stiffness reduction can be mitigated by the increase of FRP layers. Preload negligibly reduces the ultimate force and unclearly affects the ultimate displacement probably due to complicated cracks developed in concrete. A mechanism of preload effects is presented in the paper. Finally, to take into account preload effects, a modification of the widely used model of un-preload FRP confined concrete is proposed and the modified model demonstrated with a reasonable accuracy.

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Numerical approach to predict stress-strain model for tie confined self curing self compacting concrete (TCSCSCC)

  • P Swamy Naga Ratna Giri;Vikram Tati;Rathish Kumar P;Rajesh Kumar G
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Self-Curing Self Compacting Concrete (SCSCC), is a special concrete in contemporary construction practice aimed at enhancing the performance of structural concrete. Its primary function is to ensure a sufficient moisture supply that facilitates hydration along with flow, particularly in the context of high-rise buildings and tall structures. This innovative concrete addresses the challenges of maintaining adequate curing conditions in large-scale projects, maintaining requisite workability, contributing to the overall durability and longevity of concrete structures. For implementing such a versatile material in construction, it is imperative to understand the stress-strain (S-S) behaviour. The primary aim of this study is to develop the S-S curves for TCSCSCC and compare through experimental results. Finite element (FE) analysis based ATENA-GiD was employed for the numerical simulation and develop the analytical stress-strain curves by introducing parameters viz., grade of concrete, tie diameter, tie spacing and yield strength. The stress ratio and the strain ratios are evaluated and compared with experimental values. The mean error is 1.2% with respect to stresses and 2.2% in case of strain. Finally, the stress block parameters for tie confined SCSCC are evaluated and equations are proposed for the same in terms of confinement index.

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

Effect of soil-structure interaction on seismic damage of mid-rise reinforced concrete structures retrofitted by FRP composites

  • Van Cao, Vui
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.307-317
    • /
    • 2018
  • The current study explores the soil-structure interaction (SSI) effect on the potential seismic damage of mid-rise non-seismically designed reinforced concrete frames retrofitted by Fibre Reinforced Polymer (FRP). An 8-storey reinforced concrete frame poorly-confined due to transverse reinforcement deficiency is selected and then retrofitted by FRP wraps to provide external confinement. The poorly-confined and FRP retrofitted frames with/without SSI are modelled using hysteretic nonlinear elements. Inelastic time history and damage analyses are performed for these frames subjected to different seismic intensities. The results show that the FRP confinement significantly reduces one or two damage levels for the poorly-confined frame. More importantly, the SSI effect is found to increase the potential seismic damage of the retrofitted frame, reducing the effectiveness of FRP retrofitting. This finding, which is contrary to the conventionally beneficial concept of SSI governing for decades in structural and earthquake engineering, is worth taking into account in designing and evaluating retrofitted structures.