• Title/Summary/Keyword: Confined concrete.

Search Result 494, Processing Time 0.026 seconds

A constitutive model for confined concrete in composite structures

  • Shi, Qing X.;Rong, Chong;Zhang, Ting
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.689-695
    • /
    • 2017
  • The constitutive relation is an important factor in analysis of confined concrete in composite structures. In order to propose a constitutive model for nonlinear analysis of confined concrete, lateral restraint mechanism of confined concrete is firstly analyze to study the generalities. As the foundation of the constitutive model, peak stress and peak strain is the first step in research. According to the generalities and the Twin Shear Unified Strength Theory, a novel unified equation for peak stress and peak strain are established. It is well coincident with experimental results. Based on the general constitutive relations and the unified equation for peak stress and peak strain, we propose a unified and convenient constitutive model for confined concrete with fewer material parameters. Two examples involved with steel tube confined concrete and hoop-confined concrete are considered. The proposed constitutive model coincides well with the experimental results. This constitutive model can also be extended for nonlinear analysis to other types of confined concrete.

Machine learning techniques for prediction of ultimate strain of FRP-confined concrete

  • Tijani, Ibrahim A.;Lawal, Abiodun I.;Kwon, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • It is widely known that axially loaded fiber-reinforced polymer (FRP) confined concrete presents significant and enhanced mechanical properties with reference to the unconfined concrete. Therefore, to predict the mechanical behavior of FRP-confined concrete two quantities-peak strength and ultimate strain are required. Despite the significant advances, the determination of the ultimate strain of FRP-confined concrete is one of the most challenging problems to be resolved. This is often attributed to our persistence in desiring the conventional methods as the sole technique to examine this phenomenon and the complex nature of the ultimate strain of FRP-confined concrete. To bridge the research gap, this study adopted two machine learning (ML) techniques-artificial neural network (ANN) and Gaussian process regression (GPR)-to analyze observations obtained from 627 datasets of FRP-confined concrete circular and non-circular sections under axial loading test. Besides, the techniques are also used to predict the ultimate strain of FRP-confined concrete. Seven parameters namely width/diameter of the specimens, corner radius ratio, the strength of concrete, FRP elastic modulus, FRP thickness, FRP tensile rupture strain, and the axial strain of unconfined concrete-are the input parameters used to predict the ultimate strain of FRP-confined concrete. The results of the current study highlight the merit of using AI techniques in structural engineering applications given their extraordinary ability to comprehend multidimensional phenomena of FRP-confined concrete structures with ease, low computational cost, and high performance over the existing empirical models.

A trilinear stress-strain model for confined concrete

  • Ilki, Alper;Kumbasar, Nahit;Ozdemir, Pinar;Fukuta, Toshibumi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.541-563
    • /
    • 2004
  • For reaching large inelastic deformations without a substantial loss in strength, the potential plastic hinge regions of the reinforced concrete structural members should be confined by adequate transverse reinforcement. Therefore, simple and realistic representation of confined concrete behaviour is needed for inelastic analysis of reinforced concrete structures. In this study, a trilinear stress-strain model is proposed for the axial behaviour of confined concrete. The model is based on experimental work that was carried out on nearly full size specimens. During the interpretation of experimental data, the buckling and strain hardening of the longitudinal reinforcement are also taken into account. The proposed model is used for predicting the stress-strain relationships of confined concrete specimens tested by other researchers. Although the proposed model is simpler than most of the available models, the comparisons between the predicted results and experimental data indicate that it can represent the stress-strain relationship of confined concrete quite realistically.

A prediction model for strength and strain of CFRP-confined concrete cylinders using gene expression programming

  • Sema, Alacali
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.377-391
    • /
    • 2022
  • The use of carbon fiber-reinforced polymers (CFRP) has widely increased due to its enhancement in the ultimate strength and ductility of the reinforced concrete (RC) structures. This study presents a prediction model for the axial compressive strength and strain of normal-strength concrete cylinders confined with CFRP. Besides, soft computing approaches have been extensively used to model in many areas of civil engineering applications. Therefore, the genetic expression programming (GEP) models to predict axial compressive strength and strain of CFRP-confined concrete specimens were used in this study. For this purpose, the parameters of 283 CFRP-confined concrete specimens collected from 38 experimental studies in the literature were taken into account as input variables to predict GEP based models. Then, the results of GEP models were statistically compared with those of models proposed by various researchers. The values of R2 for strength and strain of CFRP-confined concrete were obtained as 0.897 and 0.713, respectively. The results of the comparison reveal that the proposed GEP-based models for CFRP-confined concrete have the best efficiency among the existing models and provide the best performance.

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

Increasing effect of concrete strength by confined conditions (콘크리트 구속 조건의 강도 증진 영향 연구)

  • Im, Seok-Been;Han, Sang-Yun;Kang, Young-Jong;Kang, Jin-Ook
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.361-371
    • /
    • 2005
  • The confined concrete subjected multi-axial stresses have been known as the fact it increases strength of concrete significantly compared with unconfined concrete. Many researchers have studied in confining effects of concrete, and now are studying in many fields. Although many researches about confined concrete using FRP have been studied recently, it is difficult to apply concrete confined by FRP in real structures because FRP is a brittle material. To investigate the influence of concrete strength and ductility increased by confining stiffness in steel, this study was tested and compared with 51 specimens confined by different shapes and thicknesses of steel tube. This test verified the increasement of strength and ductility in confined concrete. Also, analyzing the experimental data by regression method, this study provides stress-strain model about CSS and R4S considering effect of confinement stiffness on the stress-strain relations of concrete.

  • PDF

Stress-strain response on the confined normal and high-strength concrete cylinders containing steel fiber under compression

  • Purwanto;Antonius;Lisa Fitriyana
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.233-243
    • /
    • 2024
  • The behavior of confined steel fiber-reinforced concrete (including confinement models) with compressive strengths ranging from normal to high strength is still rarely studied. This paper presents the results of an investigation of fifteen confined concrete cylinders containing steel fiber. The design parameters evaluated in the experiment included concrete compressive strength (covers normal to high strength), volume fraction of steel fiber and hoop spacing. The main objective of this study was to evaluate the behavior of confined steel fiber concrete by reviewing several design parameters, such as concrete strength (normal to high strength). It is then developed to be an analytical stress-strain expression for confined steel fiber concrete. The experimental program was carried out by making cylindrical specimens with a diameter of 100 mm and a height of 200 mm. The cylindrical test object is compressed in a monotonic uniaxial loading. Experimental results have shown steel fiber in concrete has an important role in increasing the compressive strength and strain of cylindrical concrete without steel fiber. In addition, the value of strength enhancement of confined concrete (K) along with increasing fiber fraction volume; which applies to normal to high-strength concrete. The value of K also increases if the compressive strength of the concrete tends to decrease and the spacing of the hoops is closer. The comparison of stress-strain behavior between the confined steel fiber concrete proposed by other researchers and the experimental results in general significantly different in post-peak response. The statistical analysis indicates that the value of Coefficient of Variation for the confinement model by Campione is the closest compared to other existing confinement models in predicting the values of K and Toughness Index. Furthermore, the analytic stress-strain expression of confined steel fiber concrete was developed by adopting and modifying several equations from the present models. The proposed analytical expression is then verified with the experimental results. The results of the verification show that the stress-strain behavior of confined steel fiber concrete is relatively close.

Modeling the confined compressive strength of hybrid circular concrete columns using neural networks

  • Oreta, Andres W.C.;Ongpeng, Jason M.C.
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.597-616
    • /
    • 2011
  • With respect to rehabilitation, strengthening and retrofitting of existing and deteriorated columns in buildings and bridges, CFRP sheets have been found effective in enhancing the performance of existing RC columns by wrapping and bonding CFRP sheets externally around the concrete. Concrete columns and piers that are confined by both lateral steel reinforcement and CFRP are sometimes referred to as "hybrid" concrete columns. With the availability of experimental data on concrete columns confined by steel reinforcement and/or CFRP, the study presents modeling using artificial neural networks (ANNs) to predict the compressive strength of hybrid circular RC columns. The prediction of the ultimate confined compressive strength of RC columns is very important especially when this value is used in estimating the capacity of structures. The present ANN model used as parameters for the confining materials the lateral steel ratio (${\rho}_s$) and the FRP volumetric ratio (${\rho}_{FRP}$). The model gave good predictions for three types of confined columns: (a) columns confined with steel reinforcement only, (b) CFRP confined columns, and (c) hybrid columns confined by both steel and CFRP. The model may be used for predicting the compressive strength of existing circular RC columns confined with steel only that will be strengthened or retrofitted using CFRP.

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong;Shi, Qingxuan;Zhao, Hongchao
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.