• Title/Summary/Keyword: Confined concrete

Search Result 492, Processing Time 0.022 seconds

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Assessment of Confining Effect of Steel and GFRP Jackets for Concrete (콘크리트 보강강판 및 GFRP 튜브의 구속효과 분석 및 평가)

  • Choi, Eunsoo;An, Dong Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.385-392
    • /
    • 2009
  • In this study, the confining effect of the proposed steel jackets and GFRP tubes for concrete was investigated. The new steel jacket differs from the existing steel jacket in terms of installation technique and behavior. Thus, it is necessary to assess its confining effect on concrete. Moreover, the method was compared to GFRP tubes to investigate its strong and weak points. The confining effect of the proposed steel jacket was shown to correspond with that presented in the previous researches. The GFRP jacketing method, however, does not show any confining effect in some cases, according to the tube thickness and concrete peak strength as such, the previous assessment equation cannot be used in such cases. Thus, in this study, a new method of assessing the peak strength of confined concrete was suggested, and the minimum thickness was determined to show the confining effect. Lastly, the ultimate strains of concrete that had been confined through the two methods were compared to assess their ductile behavior.

Confinement Effect of High-Strength Steel Spirals According to Compressive Strength of Concrete (콘크리트 압축강도에 따른 고강도 나선철근의 횡구속 효과)

  • Kim, Sang Woo;Kim, Young Seek;Yun, Gun Jin;Lee, Jung Yoon;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.89-98
    • /
    • 2012
  • This study estimates the performance of steel spirals according to the compressive strength of the concrete. A total of 24 confined concrete cylinders ($150{\times}300mm$) were cast and tested under monotonic concentric compression. The main test parameters were the yield strength of spiral reinforcements and the compressive strength of the concrete. To effectively evaluate the confinement effect according to the yield strength of steel spirals, the external diameter of steel spirals was designed to be same as the diameter of specimen. The experimental results indicated that the performance of confinement of steel spirals increased as the yield strength of spiral reinforcement increased and the compressive strength of the concrete decreased. Furthermore, existing analytical models were used for predicting the stress versus axial strain relationships of specimens tested in this study. It can be concluded that the accuracy of the analytical models deteriorated as the yield strength of steel spirals and the compressive strength of the concrete increased.

Behavior of concrete cylinders confined by jacketing with lateral confining stress (횡방향 구속응력에 의한 자켓팅-콘크리트 공시편 거동)

  • Cho, Sung-Chul;Choi, Eun-Soo;Chung, Young-Soo;Cho, Baik-Soon;Choi, Ji-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.157-160
    • /
    • 2008
  • The confined concrete subjected multi-axil stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effect of concrete, and now are studying in many fields. Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. But sudden brittle failure of lap splices may occur under loading. This study introduces a new method to retrofit RC bridge columns with lap splice which do not have enough ductility during an earthquake. The new method use mechanical external pressure and steel plates around RC columns. The jacketing built following the new method shows good results of increasing the compressive strength and ductility of concrete cylinders. The thicker steel jacket shows larger compressive strength, however, the ductility at failure depends on the welding quality of steel jackets. In this study, The effect of the new method is verified through comparing the results of the compressive tests and analysis results.

  • PDF

Nonlinear Analysis of RC Bridge Columns for Ductility Evaluation (철근콘크리트 교각의 연성도 평가를 위한 비선형해석)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.39-49
    • /
    • 2003
  • This research is a part of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. A nonlinear analytical method is proposed to obtain moment-curvature relationship and lateral load-displacement relationship. Various analytical models that contribute seismic behavior of reinforced concrete bridge columns are adopted and modified by comparing quasi-static test results of reinforced concrete columns with spirals of circular hoops. The analysis adopts confined concrete model, longitudinal reinforcement test result of reinforced concrete columns with spirals or circular hoops. The analysis adopts confined concrete model, etc. The results obtained using the propose analytical method agree well with test results and give conservative estimations particularly for deformation capacity and ductility.

Behavior of damaged and undamaged concrete strengthened by carbon fiber composite sheets

  • Ilki, Alper;Kumbasar, Nahit
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.75-90
    • /
    • 2002
  • Many existing concrete structures suffer from low quality of concrete and inadequate confinement reinforcement. These deficiencies cause low strength and ductility. Wrapping concrete by carbon fiber reinforced polymer (CFRP) composite sheets enhances compressive strength and deformability. In this study, the effects of the thickness of the CFRP composite wraps on the behavior of concrete are investigated experimentally. Both monotonic and repeated compressive loads are considered during the tests, which are carried out on strengthened undamaged specimens, as well as the specimens, which were tested and damaged priorly and strengthened after repairing. The experimental data shows that, external confinement of concrete by CFRP composite sheets improves both compressive strength and deformability of concrete significantly as a function of the thickness of the CFRP composite wraps around concrete. Empirical equations are also proposed for compressive strength and ultimate axial deformation of FRP composite wrapped concrete. Test results available in the literature, as well as the experimental results presented in this paper, are compared with the analytical results predicted by the proposed equations.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.

Nonlinear Finite Element Analysis of High Piers (고강도 철근 콘크리트 고교각의 비선형 유한요소해석)

  • Lee, Heon-Min;Seong, Dae-Jung;Kim, Tae-Hoon;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.490-493
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of reinforced high-strength concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The increase of concrete strength due to the lateral confining reinforcement has been also taken into account to model the confined high-strength concrete. The proposed numerical method for the inelastic behavior of reinforced high-strength concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

Behaviors of Hollow RC Columns with Internal Steel Tube by Hollow Ratio (강관으로 보강된 중공 RC 기둥의 중공비에 따른 거동)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • The hollow RC(Reinforced concrete) column has the effect of reducing weight and materials compared to solid RC column. However, the hollow RC column shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC columns were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The hollow ratio is varied from 0.50 to 0.85.