• Title/Summary/Keyword: Confined Jet Flow

Search Result 44, Processing Time 0.03 seconds

An experimental study of the unsteady flow in a confined slot jet by the change of nozzle shape (노즐형상 변화에 따른 국한 슬롯형 제트의 비정상 거동에 대한 실험적 연구)

  • Min, Young-Uk;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.55-58
    • /
    • 2006
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated by using cinematic Particle Image Velocimetry technique. The three different kinds of confined slot were applied to the jet with a view to evaluating the shape effect and the jet Reynolds number was varied from 250 to 1000 for a fixed jet-to-plate spacing of H/W=5. It was found that the vortex structures in the shear layer are developed with increase of Reynolds number and that the jet becomes unsteady by the interaction of vortex pairs between 500 and 750 of Reynolds number. Finally, the slot shape was proved to be related with the generation timing of vortex pair and the temporal vortex structure.

  • PDF

NUMERICAL INVESTIGATIONS OF SUPERSONIC JET IMPINGEMENT ON A FLAT WALL IN A CONFINED PLENUM (화염배출 출구면적 변화에 대한 수직발사관 내부 초음속 충돌유동의 수치적 해석)

  • Lee K. S.;Hong S. K.;Ahan C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.281-285
    • /
    • 2005
  • Viscous solutions of supersonic jet impinging on a flat wall in a confined plenum are simulated using three-dimensional Navier-Stokes solver. A confined plenum was designed for simulating the missile launch and analyzing the behavior of the exhaust plume, which were accompanied by complex flow interactions with shock and boundary layer. Concerns of this paper are to show accurate simulation of internal flow in confined plenum and to demonstrate the jet flow structure when the jet interacts with a small opening on the side. Objectives of this numerical simulation are to understand the effect of changing the plume exit area of the plenum. Pressure and temperature rise at certain position in the plenum are traced and compared with test data.

  • PDF

A Study on Flow Characteristics of Confined Circular Jet within Pipe (이중원관 구속제트의 유동특성에 관한 연구)

  • Seo M. S.;Choi J. W.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF

NUMERICAL ANALYSIS OF JET IMPINGING ON A MOVING PLATE (움직이는 평면으로의 충돌 제트에 대한 수치해석)

  • Kang, Soo-Jin;Seo, Seok-Won;Lee, Kwan-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.129-134
    • /
    • 2011
  • In this paper, the confined single slot jet impingement is investigated numerically. Although the geometry of the jet impingement is simple, the flow pattern of the jet impingement is complex and the numerical results of the jet impingement is affected much by numerical methods. The first goal of this study is to analyze the effects of Reynolds models and numerical spatial discretization schemes on the results of heat transfer performance and the flaw characteristics and to select the best method. Various versions of the low Reynolds number k-epsilon turbulence models are compared. Using the selected numerical method, the flow field and heat transfer characteristics of confined single slot jet impingement on a moving plate are analyzed.

  • PDF

Prediction of the Flow Characteristics of Jet Fan in a Confined Space (제한공간에 설치된 제트팬의 기류특성 예측)

  • 이재헌;환유준;김경환;임윤철;오명도;김종필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.206-213
    • /
    • 2002
  • In this paper, the flow characteristics of an axial fan spraying isothermal compact jet in a confined space were investigated by the experimental methods, the numerical method, and the free jet theory According to the results, the numerical result and the experimental result are agreed well qualitatively and different quantitatively within $\pm1.0%$ for the centerline velocity, the entrainment ratio, and the maximum throw. However, the free jet theory can reasonably predict the centerline velocity except the entrainment ratio and the maximum throw. In other words, the entrainment ratio and the maximum throw by 1.he free jet theory are hard to estimate the characteristics of jet because of restriction of c confined space.

Investigation on the Unsteadiness of a Low Reynolds Number Confined Impinging Jet using POD Analysis (POD 기법을 이용한 저 레이놀즈 수 충돌 제트의 비정상 거동 연구)

  • An, Nam-Hyun;Lee, In-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.34-40
    • /
    • 2008
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated in low Reynolds number regime (Re$\leq$1,000) by using time-resolved particle image velocimetry technique. The jet Reynolds number was varied from 404 to 1026, where it is presumed that the transient regime exists. It is found that the vortical structures in the shear layer are developed with increasing Reynolds number and that the jet remains steady at the Reynolds number of 404. Vortical structures and their temporal evolution are verified and the results were compared with previous numerical studies.

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

Confined laminar vortex shedding and scalar mixing around a square cylinder with a jet (Jet가 분출되는 채널내 정사각단면 실린더 주위유동 및 혼합현상)

  • Eom, Jun-Seok;Kim, Don-Hyeong;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.759-764
    • /
    • 2000
  • In this study, the confined laminar flow around a square cylinder, which ejects a either on the front face or on the rear face, is numerically simulated. In each case, three ratios of jet velocity to the fixed upstream velocity are considered. In all cases of the rear fuel jet, the high mass-fraction region is formed along the streamlines from the jet exit. In case of front jet, drag is significantly decreased when the jet velocity ratio is greater than 1. The results obtained exhibit flow and scalar-mixing characteristics encountered in a planar combustor

  • PDF

Experimental Study on the Unsteady Behavior of a Confined Impinging jet (국한 충돌 제트의 비정상 거동에 대한 실험적 연구)

  • Kim, Kyung-Chun;Oh, Sung-Jin;Lee, In-Won
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.23-27
    • /
    • 2005
  • The flow characteristics in a confined slot jet impinging on a flat plate were Investigated by using cinematic Particle Image Velocimetry technique. The jet Reynolds number was varied from 250 to 1000 for a fixed jet-to-plate spacing of H/W=5. We found that the vortical structures in the shear layer are developed with increase of Reynolds number and that the jet becomes unsteady by the interaction of vortex pairs between 500 and 750 of Reynolds number. Vortical structures and their temporal evolution are verified by using cinematic Particle Image Velocimetry technique.

  • PDF

Experimental Study on the Unsteady Behavior of a Confined Impinging Slot Jet (국한 충돌 슬롯 제트의 비정상 거동에 대한 실험적 연구)

  • Kim, Kyung-Chun;Oh, Sung-Jin;Lee, In-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 2005
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated by using cinematic Particle Image Velocimetry technique. The jet Reynolds number was varied from 250 to 1000 for a fixed jet-to-plate spacing of H/W=5. We found that the vortical structures in the shear layer are developed with increase of Reynolds number and that the jet becomes unsteady by the interaction of vortex pairs between 500 and 750 of Reynolds number. Vortical structures and their temporal evolution are verified by using proper orthogonal decomposition.

  • PDF