• Title/Summary/Keyword: Confined

Search Result 2,294, Processing Time 0.03 seconds

Experimental and theoretical studies of confined HSCFST columns under uni-axial compression

  • Lai, M.H.;Ho, J.C.M.
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.527-552
    • /
    • 2014
  • The development of modern concrete technology makes it much easier to produce high-strength concrete (HSC) or ultra-high-strength concrete (UHSC) with high workability. However, the application of this concrete is limited in practical construction of traditional reinforced concrete (RC) structures due to low-ductility performance. To further push up the limit of the design concrete strength, concrete-filled-steel-tube (CFST) columns have been recommended considering its superior strength and ductility performance. However, the beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby reducing the elastic strength and stiffness of the CFST columns. To resolve this problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel. In this paper, a total of 29 high-strength CFST (HSCFST) columns of various dimensions cast with concrete strength of 75 to 120 MPa concrete and installed with external steel rings were tested under uni-axial compression. From the results, it can be concluded that the proposed ring installation can further improve both strength and ductility of HSCFST columns by restricting the column dilation. Lastly, an analytical model calculating the uni-axial strength of ring-confined HSCFST columns is proposed and verified based on the Von-Mises and Mohr-Coulomb failure criteria for steel tube and in-filled concrete, respectively.

Development of simulation systems for telemanipulators in confined cell facilities

  • Yu, Seungnam;Ryu, Dongsuk;Han, Jonghui;Lee, Jongkwang;Lee, Hyojik;Park, Byungsuk
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.429-447
    • /
    • 2020
  • The considered simulation tasks are based on an electrometallurgical process development strategy and associated telemanipulator simulation systems are proposed with various scales of experimental facilities. Fundamentally, target facilities are assumed to be operated only by remote handling systems because the considered process is operated in hazardous environments. Futhermore, the feasibility at various scales should be experimentally verified with gradual increase in throughput. In this regard, bench, engineering, and pilot-scale simulation systems are important early-stage tools for assessing the practical operability of the target process with the material handling systems. Such simulation systems are highly customized for applications and are a precursor to larger pilot and demonstration-scale plants. This paper introduced and classified the developed simulator systems for this approach at various scales using remote handling systems which were assembled inside a virtual target facility, and the manmachine interface was included for a more realistic operation of the simulator. The results obtained for each simulator show the feasibility and requirement for improvement of the systems for the considered test issues with respect to the operation and maintenance of the process.

Ductility Capacity for Concrete Filled Steel Circular Tubes Reinforced by Carbon Fiber Sheets(CFSs) (탄소섬유쉬트로 보강된 콘크리트충전 원형강관기둥의 연성능력)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • This paper presents the experiment results for a CFT column confined by carbon fiber sheets(CFSs) under an axial load. Nine specimens were constructed and axial compression tests were conducted. The main experiment parameters were diameter-thickness ratio(D/t), reinforcing CFSa, and the attachment of a cushion gap between surface of steel tube and CFSs. The load-displacement curves of the specimens were obtained from the compression tests. Finally, it was concluded that the CFT column with a gap had grater ductility capacity improvement that the CFT column confined by CFSs.

A Study of Pier-Segment Joint for Fabricated Internally Confined Hollow CFT Pier (조립식 내부 구속 중공 CFT 교각을 위한 교각세그먼트 접합부 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Dong-Jun;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.161-171
    • /
    • 2010
  • Bridges have undergone distinctive development in accordance of the introduction of new materials and structural types. The importance on rapid construction technology is currently attracting more and more attention worldwidely as well as domestically because its effectiveness in reducing the overall construction cost. While a wide ranges of previous researches on rapid construction of super structures are available, the studies on substructures are quite limited. The development of the precast segmental internally confined hollow CFT piers are briefly introduced herein and design formulas are presented for pier segment joints, Also, a extensive parametric studies are carried out for the effect of the constitutive elements of the joints. Finally, the design formulas are verified throughout a series of extensive finite element analyses.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

A Numerical Study of Autoignition in a Confined Cylindrical Spray Combustor (밀폐된 원통형 분무 연소기내의 자연발화 현상에 관한 수치적 연구)

  • Choi, Ji Hun;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.778-787
    • /
    • 1999
  • In this study, the autoignition process of liquid fuel, injected into hot and stagnant air in a 2-D axisymmetric confined cylindrical combustor, has been investigated. Eulerian-Lagrangian scheme was adopted to analyze the two-phase flow and combustion. The unsteady conservation equations were used to solve the transition of the gas field. Interactions between two phases were accounted by using the particle source in cell (PSI-Cell) model, which was used for detailed consideration of the finite rates of transports between phases. And infinite conduction model was adopted for the vaporization of droplets. The results have shown that the process of the autoignition consists of heating up of droplets, vaporization, mixing and ignition. The ignition criteria could be determined by the temporal variations of temperature, reaction rate and species mass fraction. And the effects of various parameters on ignition phenomena are examined. These have shown that the increasing the reaction rate and/or the vaporization rate can reduce the ignition delay time.

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

Cystic Giant Sacral Schwannoma Mimicking Aneurysmal Bone Cyst : A Case Report and Review of Literatures

  • Cho, Dong-Young;Hur, Jung-Woo;Shim, Jung-Hyun;Kim, Jin-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.4
    • /
    • pp.350-354
    • /
    • 2013
  • To present a rare case of a cystic giant schwannoma of the sacrum mimicking aneurysmal bone cyst (ABC). A 54-year-old man visited our institute complaining left leg weakness and sensory change for several years. Magnetic resonance imaging revealed a large multilocular cystic mass with canal invasion and bone erosion confined to left S1 body. The lesion showed multiple septal enhancement without definite solid component. Initially the tumor was considered as ABC. The patient underwent grossly-total tumor resection with lumbosacral reconstruction via posterior approach. The tumor was proved to be a cystic schwannoma. The postoperative course was uneventful and the patient was relieved from preoperative symptoms. We present a rare case of pure cystic giant schwannoma confined to sacrum mimicking ABC. The surgical treatment is challenging due to the complex anatomy of the sacrum. Schwannoma should be considered in the differential diagnosis of osteolytic sacral cysts.

Study on the Jet Impingement Heat Transfer Characteristics at Protruding heated Blocks (돌출 발열블록표면에서의 충돌분류 열전달 특성에 관한 연구)

  • Jeong, In-Gi;Park, Si-U;Park, Su-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1670-1677
    • /
    • 2000
  • An experimental investigation on heat transfer characteristics of two-dimensional heated blocks using a confined impinging slot jet has been performed. The effect of jet Reynolds number(Re=3900, 5800, 9700), streamwise block spacing(p/w=0.5, 1, 1.5) and dimensionless nozzle to block distance(H/B=1, 2, 4, 6) have been examined with five isothermally heated blocks. With the measurement of jet mean velocity and turbulence intensity distributions at nozzle exit, initially turbulent regimes, are classified. To clarify local heat transfer characteristics, naphthalene sublimation technique as used. The maximum Nusselt number at the stagnation point for the jet Reynolds number is occurred at H/B=4. Besides, the local and a average heat transfer of heated blocks increase with decreasing streamwise block spacing and increasing jet Reynolds number.

Optical Properties of ZnO-ZnMgO Quantum Wells Grown by Atomic Layer Deposition Technique (원자층 증착법으로 성장한 ZnO-ZnMgO 양자우물의 광전이 특성)

  • Shin, Y.H.;Kim, Yongmin
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • We fabricated ZnO-ZnMgO single quantum well (SQW) samples having different well-widths by using the atomic layer deposition technique. The QW samples exhibit different optical transition behaviors with different QW widths. We confirm that when the well-width of 1.5 nm does not have a confined quantum energy level due to the Mg diffusion into the well caused by after-thermal treatment whereas the QWs wider than 1.5 nm show optical transitions between the confined energy levels.