• Title/Summary/Keyword: Confined

Search Result 2,269, Processing Time 0.028 seconds

Effect of confined concrete on compressive strength of RC beams

  • Radnic, Jure;Markic, Radoslav;Harapin, Alen;Matesan, Domagoj
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.215-225
    • /
    • 2013
  • The results of experimental testing of the effect of confined concrete on compressive strength and ductility of concrete beam subjected to pure bending are presented. The effect of different stirrups forms and spacing, as well as different concrete strengths, on beam carrying capacity and ductility were analyzed. Ultimate strength capacity and deflection of concrete beam increase with the decrease in stirrups spacing. Stirrup form has a great effect on the ultimate carrying capacity and ductility of concrete beam. Stirrups which confined the region of concrete in the compression more contribute to greater compression strength of concrete than common stirrups at the perimeter of the entire cross-section of the beam.

Non-destructive evaluation and pattern recognition for SCRC columns using the AE technique

  • Du, Fangzhu;Li, Dongsheng
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.173-190
    • /
    • 2019
  • Steel-confined reinforced concrete (SCRC) columns feature highly complex and invisible mechanisms that make damage evaluation and pattern recognition difficult. In the present article, the prevailing acoustic emission (AE) technique was applied to monitor and evaluate the damage process of steel-confined RC columns in a quasi-static test. AE energy-based indicators, such as index of damage and relax ratio, were proposed to trace the damage progress and quantitatively evaluate the damage state. The fuzzy C-means algorithm successfully discriminated the AE data of different patterns, validity analysis guaranteed cluster accuracy, and principal component analysis simplified the datasets. A detailed statistical investigation on typical AE features was conducted to relate the clustered AE signals to micro mechanisms and the observed damage patterns, and differences between steel-confined and unconfined RC columns were compared and illustrated.

COMPRESSIVE STRENGH OF FRP-CONFINED CONCRETE COLUMNS UNDER THE ECCENTRIC LOADS

  • H.R. Salehian;M.R. Esfahani
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.978-982
    • /
    • 2009
  • In recent years, due to some excellent properties of fiber reinforced polymer (FRP) composites, the use of FRP sheets for strengthening the weak concrete columns have become increasingly popular. Axial loading is the basic assumption in most of the models that are presented for estimating the compression strength of confined concrete columns. However a large number of weak concrete columns in the bending frames are under the combination of both axial and flexural loads. This paper presents the results of an experimental study on the effects of eccentricity of load on the compressive strength of concrete columns confined by FRP sheets. This research shows that the eccentricity of compression load affects decreasingly the performance of confining FRP jacket in confined columns.

  • PDF

Experimental investigation of the stress-strain behavior of FRP confined concrete prisms

  • Hosseinpour, F.;Abbasnia, R.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.177-192
    • /
    • 2014
  • One of the main applications of FRP composites is confining concrete columns. Hence identifying the cyclic and monotonic stress-strain behavior of confined concrete columns and the parameters influencing this behavior is inevitable. Two significant parameters affecting the stress-strain behavior are aspect ratio and corner radius. The present study aims to scrutinize the effects of corner radius and aspect ratio on different aspects of stress-strain behavior of FRP confined concrete specimens (rectangular, square and circular). Hence 44 FRP confined concrete specimens were tested and the results of the tests were investigated. The findings indicated that for specimens with different aspect ratios, the relationship between the ultimate stress and the corner radius is linear and the variations of the ultimate stress versus the corner radius decreases as a result of an increase in aspect ratio. It was also observed that increase of the corner radius results in increase of the compressive strength and ultimate axial strain and increase of the aspect ratio causes an increase of the ultimate axial strain but a decrease of the compressive strength. Investigation of the ultimate condition showed that the FRP hoop rupture strain is smaller in comparison with the one obtained from the tensile coupon test and also the ultimate axial strain and confined concrete strength are smaller when a prism is under monotonic loading. Other important results of this study were, an increase in the axial strain during the early stage of unloading paths and increase of the confining effect of FRP jacket with the increase and decrease of the corner radius and aspect ratio respectively, a decrease in the slope of reloading branches with cycle repetitions and the independence of this trend from the variations of the aspect ratio and corner radius and also quadric relationship between the number of each cycle and the plastic strain of the same cycle as well as the independence of this relationship from the aspect ratio and corner radius.

Analytical Study on the Fire Resistance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내화 성능에 대한 해석 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Jong Sup;Kim, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • A column resisting axial load and seismic load is one of the main members in a structural system. The heated column by event of a fire can lose its strength and it may damage its structural system or cause the collapse of the entire structural system. In this study, the fire resistance capacity of internally confined hollow concrete filled tube (ICH CFT) column was investigated. In an ICH CFT column, the yield strength of the external tube is important as a concrete filled tube (CFT) column because the external tube confines the filled concrete and the strength of the column depends on the confined effect. A study was performed by finite element analyses considering the confined effect and material nonlinearity as the temperature changes by the fire. The hollow ratio, the thickness of the external tube, and the strength of concrete were selected as the parameters for the analyses. The analyses were performed by using a commercial FEA program (ABAQUS) and nonlinear concrete model program. The analysis results showed that the hollow ratio and the strength of concrete mainly affect the fire resisting capacity of an ICH CFT column.

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.

Accident Prevention in Confined Space Using IoT Technology (IoT 기술을 활용한 밀폐공간에서의 사고 예방 연구)

  • Choi, Yoo-jung;Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1159-1164
    • /
    • 2018
  • Recently, Internet use is increasing in various fields. Especially in the sudden disaster area, the role of Internet of things that can continuously monitor is getting bigger. In this study, the characteristics of the confined space and the environmental hazards are examined, and the Internet of the object which is being commercialized will be reviewed. Accidents in confined spaces are very high compared to other places, and it is very difficult to predict accidents. Recently, various attempts have been made to prevent accidents in confined spaces using the Internet of things. Especially, it detects the various gases that can occur in the closed space using sensors and sends them to the workers in real time, so that the risk can be detected in advance to minimize the risk. In this paper, we propose an effective disaster prevention plan using the Internet of things through the case study of the Internet for the prevention of accidents in a confined space.

Fire fighters' Asphyxiation Incidents during Confined Space Rescue in Korea (소방공무원의 비화재 밀폐공간 구조·구급 활동 중 질식 및 중독재해 사례 분석)

  • Lee, Juhee;Kang, Taesun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.590-602
    • /
    • 2019
  • Objectives: This study was conducted to prevent asphyxiation of firefighters during confined space rescue. The specific purpose was to identify the magnitude of the problem, identify the cause of the accidents, and suggest measures to ensure safety of confined space rescues. Methods: We collected data from National Fallen Firefighters Memorial, press releases, and other sources In order to identify the current situation of asphyxiation incidents among firefighters from 1945 to 2019. In addition, an incident investigation was conducted for each case, and the processes, causes, and control measures of the incidents were described as a narrative data entry. Results: Over the past 73 years, eight incidents involving firefighter in Korea have occurred. In these incidents, five firefighters were killed, and eight were injured. The confined spaces incidents occurred were water supply tanks, wastewater treatment tanks, pickling pits, septic tanks, and more. The causes were three cases of hydrogen sulfide poisoning, one of oxygen deficiency, one of carbon monoxide poisoning, and three unclassifiable asphyxiations. The people in need were all workers in various industries. Conclusions: The number of firefighters' deaths and injuries during rescues in confined spaces was severe and the risks have not been completely eliminated. By establishing and implementing a precise incident investigation system, according control measures should be initiatedin order to prevent a recurrence of the same type of disaster and reflected in the SOP. In particular, due to the high risk of occurrence at workplaces, cooperation between fire and rescue authority and relevant agencies such as the Ministry of Employment and Labor and the KOSHA should be strengthened.

A numerical analysis of compressive strength of rectangular concrete columns confined by FRP

  • Lin, Huei-Jeng;Liao, Chin-I;Yang, Chin
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.235-248
    • /
    • 2006
  • This investigation presents an analysis procedure for simulating the compressive behavior of a rectangular concrete column confined by fiber-reinforced plastic (FRP) under uniaxial load. That is, the entire stress-strain curve can be drawn through the present analysis procedure. The modified Mander's stress-strain model (Mander, et al. 1988) and finite element method are adopted in this analysis procedure. The numerical analysis results are compared with the experimental results to verify the accuracy of the analysis procedure. This study offers a useful analysis procedure of researching the compressive behavior of rectangular concrete columns confined by FRP. Two main parameters, the number of FRP layers and the radius of the round corners of a rectangular column, are investigated. The numerical results show that non-uniform stresses occur and reduce the sectional effective area owing to the geometry of the confined rectangular column. The stresses are concentrated at the corners of the rectangular column. Compressive strength of a rectangular column increases greatly because the number of FRP layers increase. The maximum predicted compressive stress of the rectangular column has approximately 10% error as compared to the experimental results. Comparing the numerical and experimental results demonstrates that the accuracy of this analysis procedure is credible. Besides, the stress-strain curves of the R30 models, which are rectangular concrete column with large radius of round corners, are almost bilinear. This calculated results conform to the expectation and show the present analysis procedure are more suitable than Mander's model (1988) to analyze the compressive behavior of the rectangular concrete column confined by FRP.

Confined concrete model of circular, elliptical and octagonal CFST short columns

  • Patel, Vipulkumar I.;Uy, Brian;Prajwal, K.A.;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.497-520
    • /
    • 2016
  • The confined concrete stress-strain curves utilised in computational models of concrete-filled steel tubular (CFST) columns can have a significant influence on the accuracy of the predicted behaviour. A generic model is proposed for predicting the stress-strain behaviour of confined concrete in short circular, elliptical and octagonal CFST columns subjected to axial compression. The finite element (FE) analysis is carried out to simulate the concrete confining pressure in short circular, elliptical and octagonal CFST columns. The concrete confining pressure relies on the geometric and material parameters of CFST columns. The post-peak behaviour of the concrete stress-strain curve is determined using independent existing experimental results. The strength reduction factor is derived for predicting the descending part of the confined concrete behaviour. The fibre element model is developed for the analysis of circular, elliptical and octagonal CFST short columns under axial loading. The FE model and fibre element model accounting for the proposed concrete confined model is verified by comparing the computed results with experimental results. The ultimate axial strengths and complete axial load-strain curves obtained from the FE model and fibre element model agree reasonably well with experimental results. Parametric studies have been carried out to examine the effects of important parameters on the compressive behaviour of short circular, elliptical and octagonal CFST columns. The design model proposed by Liang and Fragomeni (2009) for short circular, elliptical and octagonal CFST columns is validated by comparing the predicted results with experimental results.