• Title/Summary/Keyword: Configuration Function

Search Result 796, Processing Time 0.026 seconds

Analysis of Automatic Neighbor Relation Technology in Self Organization Networks of LTE (LTE 네트워크에서 SON ANR 기술 분석)

  • Ahn, Ho-Jun;Yang, Mo-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.893-900
    • /
    • 2019
  • This paper deals with the analysis of SON (Self Organization Network) technology in LTE networks. SON is a unique LTE feature compared to previous cellular systems UMTS and GSM, and is a cost-effective tool for achieving the best performance in a changing environment. In addition, SON has the function of automating the settings of the network, enabling centralized planning and reducing the need for manual tasks. SON is largely divided into three categories: Self-Configuration, Self-Optimization, and Self-Healing. Each large category has a detailed description, and all the technologies in each category come together to complete the technology called SON. In this paper, we analyzed intensively about ANR among the techniques of Self-Configuration in each of the three categories.

AERODYNAMIC DESIGN OPTIMIZATION OF UAV ROTOR BLADES USING A GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS (유전 알고리즘과 인공 신경망 기법을 이용한 무인항공기 로터 블레이드 공력 최적설계)

  • Lee, H.M.;Ryu, J.K.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.29-36
    • /
    • 2014
  • In the present study, an aerodynamic design optimization of UAV rotor blades was conducted using a genetic algorithm(GA) coupled with computational fluid dynamics(CFD). To reduce computational cost in making databases, a function approximation was applied using artificial neural networks(ANN) based on a radial basis function network. Three dimensional Reynolds-Averaged Navier-Stokes(RANS) solver was used to solve the flow around UAV rotor blades. Design directions were specified to maximize thrust coefficient maintaining torque coefficient and minimize torque coefficient maintaining thrust coefficient. Design variables such as twist angle, thickness and chord length were adopted to perform a planform optimization. As a result of an optimization regarding to maximizing thrust coefficient, thrust coefficient was increased about 4.5% than base configuration. In case of an optimization minimizing torque coefficient, torque coefficient was decreased about 7.4% comparing with base configuration.

Analysis of the Metal Flow in H-Beam Rolling using Beam Blank (빔 블랑크를 이용한 H 형강 압연 거동 연구)

  • Kim, J.M.;Choi, W.N.;Park, C.S.;Kim, K.W.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.383-388
    • /
    • 2013
  • Metal flow of the beam blank during H-beam rolling was examined in order to correlate the rolling defects with the beam blank configuration. For this purpose, H-beam rolling was performed on the beam blank where stainless steel bolts were inserted as the marker at the web and flange. The positional variation of the marker was monitored at each rolling pass, and the result was compared with the 3D FEM simulation employing the point tracking function. The simulation results were reasonably agreed with the experimental within the error of 0.5~1mm on both web and flange of the H-beam. It is anticipated that the 3D FEM simulation employing the point tracking function provides the guidance information on analyzing the correlation between the rolling defects and the beam blank configuration in H-beam rolling.

Collison-Free Trajectory Planning for SCARA robot (스카라 로봇을 위한 충돌 회피 경로 계획)

  • Kim, T.H.;Park, M.S.;Song, S.Y.;Hong, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2360-2362
    • /
    • 1998
  • This paper presents a new collison-free trajectory problem for SCARA robot manipulator. we use artificial potential field for collison detection and avoidance. The potential function is typically defined as the sum of attractive potential pulling the robot toward the goal configuration and a repulsive potential pushing the robot away from the obstacles. In here, end-effector of manipulator is represented as a particle in configuration space and moving obstacles is simply represented, too. we consider not fixed obstacle but moving obstacle in random. So, we propose new distance function of artificial potential field with moving obstacle for SCARA robot. At every sampling time, the artificial potential field is update and the force driving manipulator is derived from the gradient vector of artificial potential field. To real-time path planning, we apply very simple modeling to obstacle. Some simulation results show the effectiveness of the proposed approach.

  • PDF

Configuration and Characteristics of Fine Sun Sensor for Satellite (위성용 고정밀 태양센서 구성 및 특성)

  • Kim, Yong-Bok;Pank, Keun-Joo;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.87-93
    • /
    • 2011
  • FSSA(Fine Sun Sensor Assembly) is the important sensor for satellite attitude control. FSSA measures the direction of the sun's rays and determines whether the satellite is in the eclipse or not. FSSA for GEO Satellite is also used to acquire the attitude error information in the attitude control reference frame and acquire the Sun direction during transfer orbit or mission Process. This paper shows the configuration of Fine Sun Sensor for LEO and GEO Satellite and their principle of operation that angle measurement is obtained by using the transfer function which is the ratio of the difference between output currents of Solar Cell to the sum of all output currents.

Aircraft configuration selection method using the airworthiness certification and the decision making process (항공안전 규정 및 의사결정모델을 이용한 항공기 형상선정기법 연구)

  • Yoon, Jung-Won;Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.467-476
    • /
    • 2010
  • For the very light jet aircraft design, the design baseline configuration has been selected using the logical decision making process, and the design optimization problem is formulated by considering the airworthiness regulations as design constraints. Airworthiness regulations are the minimum requirements for the safe aircraft flight and must be considered from the conceptual design stage. After carefully selecting the airworthiness constraints and the user specified requirements, a series of design making models including the affinity diagram, nested column diagram, quality function deployment (QFD), Pugh concept selection matrix, are used to find and evaluate alternative configuration baselines. From the feasible design space searching process, the best altenative design, which satisfies the airworthiness constraints while excluding the user subjective decisions as much as possible, has been successfully derived.

A Study on the Spatial Configuration of Type of Health Examination Center (건강검진센터의 공간유형과 구조체계에 관한 연구)

  • Song, Seung-Eon;Kim, Suk-Tae
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.5
    • /
    • pp.399-410
    • /
    • 2012
  • Due to development of modern medical services and economics, people raised expectation and demand about medical services from previous disease treatment to comprehensive health care covering prevention and health care. Responses of each medical facility to these social needs and the evolution of concept of medicine rapidly occur. The health examination centers are being operated with the purpose of health examination and this trend is reflected on several aspects such as the size of the facilities, function and configuration of space in health examination centers. Thus, health examination centers consisting of various space systems appear, but this trend and interpretations are lacking. Therefore, the purpose of this study is to draw trends of system through analysis of types and its evolved space systematic analysis and establish it. Analysis targets were classified into small, medium and large groups by sizes based on number of space and a total of 12 health examination centers in four for each category were selected. As research methods, functional relationship of space was examined through analysis of type in which segmentalized type tools were applied in local units. The flow diagram was established based on direction turning point and was classified into sub-flow and main-flow in local units and the systems between local units were derived. Finally, the results of this study can be summarized as the following three results. 1) The space connection system of health examination center showed four systems such as circulation, independence, continuation, and network. 2) Local type indicators and global type indicators which were evolved more from limitation of type analysis tools in existing research were derived so that more systematic analysis could be made. 3) Network system is distributed approach system and space for each function is formed around public space.

  • PDF

The Effect of Hyperparameter Choice on ReLU and SELU Activation Function

  • Kevin, Pratama;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.73-79
    • /
    • 2017
  • The Convolutional Neural Network (CNN) has shown an excellent performance in computer vision task. Applications of CNN include image classification, object detection in images, autonomous driving, etc. This paper will evaluate the performance of CNN model with ReLU and SELU as activation function. The evaluation will be performed on four different choices of hyperparameter which are initialization method, network configuration, optimization technique, and regularization. We did experiment on each choice of hyperparameter and show how it influences the network convergence and test accuracy. In this experiment, we also discover performance improvement when using SELU as activation function over ReLU.

Power-Flow Simulator with Visualization Function Based on IEEE Common Data Format

  • Sugino, Shohei;Sekiya, Hiroo
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.161-168
    • /
    • 2016
  • In this paper, a power flow simulator, which visualizes power flow and system configuration, is proposed and implemented. Generally, it is necessary to prepare a text file with power-system descriptions, which is one of the barriers for power-flow simulations. The proposed simulator has a function of automatic generations of IEEE common data format files from user-drawn power-system diagrams. Therefore, it is possible for users to carry out simulations only by drawing power system on display. In addition, the proposed simulator also has a function that power-system diagram is illustrated automatically from an IEEE common data format file. By using this function, it is possible to visualize amounts and directions of power flows on the bus-system diagram, which helps users to comprehend network dynamics intuitively. Because the proposed simulator allows including renewable-resource generators in power systems, it is useful to evaluate the power distribution system. It is shown in this paper that the proposed simulator can make IEEE common data format files correctly and illustrate intuitive power flow.

Weight Function Theory for a Mode III Crack In a Rectilinear Anisotropic Material (가중함수이론을 이용한 선형이방성재료에서의 Mode III 균열해석)

  • An, Deuk-Man;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.146-151
    • /
    • 2009
  • In this paper, a weight function theory for the calculation of the mode III stress intensity factor in a rectilinear anisotropic body is formulated. This formulation employs Lekhnitskii's formalism for two dimensional anisotropic materials. To illustrate the method used for the weight function theory, we calculated the mode III stress intensity factor in a single edge-notched configuration.