• Title/Summary/Keyword: Confidence Probability

Search Result 325, Processing Time 0.029 seconds

A Comparison Study for the Confidence Intervals of the Common Odds Ratio in the Stratified 2 X 2 Tables Using the Average Coverage Probability

  • Kwak, Min Jung;Jeong, Hyeong Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.779-793
    • /
    • 2003
  • In this paper, various methods for finding confidence intervals for common odds ratio $\psi$ of the K 2${\times}$2 tables are reviewed. Also we propose two jackknife confidence intervals and bootstrap confidence intervals for $\psi$. These confidence intervals are compared with the other existing confidence intervals by using Monte Carlo simulation with respect to the average coverage probability.

Balanced Accuracy and Confidence Probability of Interval Estimates

  • Liu, Yi-Hsin;Stan Lipovetsky;Betty L. Hickman
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2002
  • Simultaneous estimation of accuracy and probability corresponding to a prediction interval is considered in this study. Traditional application of confidence interval forecasting consists in evaluation of interval limits for a given significance level. The wider is this interval, the higher is probability and the lower is the forecast precision. In this paper a measure of stochastic forecast accuracy is introduced, and a procedure for balanced estimation of both the predicting accuracy and confidence probability is elaborated. Solution can be obtained in an optimizing approach. Suggested method is applied to constructing confidence intervals for parameters estimated by normal and t distributions

  • PDF

Choosing between the Exact and the Approximate Confidence Intervals: For the Difference of Two Independent Binomial Proportions

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.363-372
    • /
    • 2009
  • The difference of two independent binomial proportions is frequently of interest in biomedical research. The interval estimation may be an important tool for the inferential problem. Many confidence intervals have been proposed. They can be classified into the class of exact confidence intervals or the class of approximate confidence intervals. Ore may prefer exact confidence interval s in that they guarantee the minimum coverage probability greater than the nominal confidence level. However, someone, for example Agresti and Coull (1998) claims that "approximation is better than exact." It seems that when sample size is large, the approximate interval is more preferable to the exact interval. However, the choice is not clear when sample, size is small. In this note, an exact confidence and an approximate confidence interval, which were recommended by Santner et al. (2007) and Lee (2006b), respectively, are compared in terms of the coverage probability and the expected length.

A Simulation Study for the Confidence Intervals of p by Using Average Coverage Probability

  • Kim, Daehak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.859-869
    • /
    • 2000
  • In this paper, various methods for finding confidence intervals for p of binomial parameter are reviewed. Also we introduce tow bootstrap confidence intervals for p. We compare the performance of bootstrap methods with other methods in terms of average coverage probability by Monte Carlo simulation. Advantages of these bootstrap methods are discussed.

  • PDF

Comparison of confidence intervals for testing probabilities of a system (시스템의 확률 값 시험을 위한 신뢰구간 비교 분석)

  • Hwang, Ik-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.435-443
    • /
    • 2010
  • When testing systems that incorporate probabilistic behavior, it is necessary to apply test inputs a number of times in order to give a test verdict. Interval estimation can be used to assert the correctness of probabilities where the selection of confidence interval is one of the important issues for quality of testing. The Wald interval has been widely accepted for interval estimation. In this paper, we compare the Wald interval and the Agresti-Coull interval for various sizes of samples. The comparison is carried out based on the test pass probability of correct implementations and the test fail probability of incorrect implementations when these confidence intervals are used for probability testing. We consider two-sided confidence intervals to check if the probability is close to a given value. Also one-sided confidence intervals are considered in the comparison in order to check if the probability is not less than a given value. When testing probabilities using two-sided confidence intervals, we recommend the Agresti-Coull interval. For one-sided confidence intervals, the Agresti-Coull interval is recommended when the size of samples is large while either one of two confidence intervals can be used for small size samples.

Confidence Intervals for the Difference of Binomial Proportions in Two Doubly Sampled Data

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.309-318
    • /
    • 2010
  • The construction of asymptotic confidence intervals is considered for the difference of binomial proportions in two doubly sampled data subject to false-positive error. The coverage behaviors of several likelihood based confidence intervals and a Bayesian confidence interval are examined. It is shown that a hierarchical Bayesian approach gives a confidence interval with good frequentist properties. Confidence interval based on the Rao score is also shown to have good performance in terms of coverage probability. However, the Wald confidence interval covers true value less often than nominal level.

A Comparison of Some Approximate Confidence Intervals for he Poisson Parameter

  • Kim, Daehak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.899-911
    • /
    • 2000
  • In this paper, we reviewed thirteen methods for finding confidence intervals for he mean of poisson distribution. Bootstrap confidence intervals are also introduced. Two bootstrap confidence intervals are compared with the other existing eleven confidence intervals by using Monte Carlo simulation with respect to the average coverage probability of Woodroofe and Jhun (1989).

  • PDF

The Weighted Polya Posterior Confidence Interval For the Difference Between Two Independent Proportions (독립표본에서 두 모비율의 차이에 대한 가중 POLYA 사후분포 신뢰구간)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.171-181
    • /
    • 2006
  • The Wald confidence interval has been considered as a standard method for the difference of proportions. However, the erratic behavior of the coverage probability of the Wald confidence interval is recognized in various literatures. Various alternatives have been proposed. Among them, Agresti-Caffo confidence interval has gained the reputation because of its simplicity and fairly good performance in terms of coverage probability. It is known however, that the Agresti-Caffo confidence interval is conservative. In this note, a confidence interval is developed using the weighted Polya posterior which was employed to obtain a confidence interval for the binomial proportion in Lee(2005). The resulting confidence interval is simple and effective in various respects such as the closeness of the average coverage probability to the nominal confidence level, the average expected length and the mean absolute error of the coverage probability. Practically it can be used for the interval estimation of the difference of proportions for any sample sizes and parameter values.

Approximated Posterior Probability for Scoring Speech Recognition Confidence

  • Kim Kyuhong;Kim Hoirin
    • MALSORI
    • /
    • no.52
    • /
    • pp.101-110
    • /
    • 2004
  • This paper proposes a new confidence measure for utterance verification with posterior probability approximation. The proposed method approximates probabilistic likelihoods by using Viterbi search characteristics and a clustered phoneme confusion matrix. Our measure consists of the weighted linear combination of acoustic and phonetic confidence scores. The proposed algorithm shows better performance even with the reduced computational complexity than those utilizing conventional confidence measures.

  • PDF

A simulation study for the approximate confidence intervals of hypergeometric parameter by using actual coverage probability (실제포함확률을 이용한 초기하분포 모수의 근사신뢰구간 추정에 관한 모의실험 연구)

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1175-1182
    • /
    • 2011
  • In this paper, properties of exact confidence interval and some approximate confidence intervals of hyper-geometric parameter, that is the probability of success p in the population is discussed. Usually, binomial distribution is a well known discrete distribution with abundant usage. Hypergeometric distribution frequently replaces a binomial distribution when it is desirable to make allowance for the finiteness of the population size. For example, an application of the hypergeometric distribution arises in describing a probability model for the number of children attacked by an infectious disease, when a fixed number of them are exposed to it. Exact confidence interval estimation of hypergeometric parameter is reviewed. We consider the approximation of hypergeometirc distribution to the binomial and normal distribution respectively. Approximate confidence intervals based on these approximation are also adequately discussed. The performance of exact confidence interval estimates and approximate confidence intervals of hypergeometric parameter is compared in terms of actual coverage probability by small sample Monte Carlo simulation.