• Title/Summary/Keyword: Cone-calorimeter

Search Result 211, Processing Time 0.021 seconds

A Study on the Combustion Characteristics of Useful Imported Wood for Building Materials - Focusing on the North American species (Douglas-fir, Western Red cedar) and African species(Makore, Padauk, Bubinga) - (국내 유용 건축자재용 수입 목재의 연소특성에 관한 연구 - 북미 산재(Douglas-fir, Western Red cedar)와 아프리카 산재 (Makore, Padauk, Bubinga)를 중심으로 -)

  • Seo, Hyun Jeong;Baek, Jong Kyo;Lee, Min Chul
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.8-14
    • /
    • 2017
  • This study examined the combustion and thermal characteristics of imported woods for building materials in Korea. Wooden specimens were confirmed by a cone calorimeter according to the KS F ISO 5660-1 standard. The combustion properties of the wooden specimens were measured in terms of the heat release rate (HRR), total heat released (THR), mass lose rate (MLR), and ignition time (time to ignition; TTI). The optical microscope was used for determine the anatomical characteristics of wood pit and structure. Also, the thermal properties were measured by thermogravimetric analysis (TGA) to determine the thermal stability of wooden specimens. The result of this experiment would be useful for fundamentals of guiding the combustion properties and thermal stability using wood application.

A Study for the Fire Retardant-Characteristics of Expandable Graphite Composite Materials (팽창흑연을 사용한 복합재료의 난연 특성에 관한 연구)

  • Chun, Kwan-Ok;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.28-33
    • /
    • 2017
  • In this study, the composite material of expandable graphite was made to the material development for improving such as a composite material of the sandwich panels or material properties of a fire door and was tested by the ISO 1182, ISO 5660-1(Cone calorimeter Method). For the test, the composite material of expandable graphite, what the expandable graphite ratio was increased by respectively 0g~30g, was classified A1,A2, A3, A4, and made to the test specimens. Through cone calorimeter test, peak heat release rate(HRR) and total heat release(THR), expanded thickness and expansion rate of each composite material of expandable graphite, and fire prone crack and mass loss rate after burning was measured. Thus, the effect of the addition of the expandable graphite and whether is suitable for reference as a fire retardant, was analyzed. Consequently the correlation of THR and fire retardant performance rate was confirmed.

Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added (탄소재료의 적용 방법에 따른 파티클 보드의 연소 특성)

  • Seo, Hyun Jeong;Jo, Jeong Min;Hwang, Wuk;Lee, Min Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • This study was conducted to evaluate the fire retardant performance of exfoliated graphite nanoplatelets (xGnP) applied for particleboard. This work measured heat release rate(HRR), total heat release(THR) and smoke production rate(SPR) of xGnP added particleboard, using cone calorimeter to assess its fire characteristics according to the KS F ISO 5660-1 standard code. Heat release rates of all specimens treated by xGnP were less than the $200kW/m^2$ for a total experiment period of five minutes. Heat release rates of the specimens coated with xGnP were lower than those of the specimens made by mixing wood particles with xGnP directly. Meanwhile, the total heat release rates of xGnP coated specimen maintained quite lower level than the uncoated so the xGnP coating were effective in improving the fire retardant performance of particleboard. However, the smoke emission peaking problem at the initial combustion period, which was caused by adding base coating materials, should be resolved for further satisfaction as a fire retardant materials.

Analysis on the Reaction-to-fire's Performance of Sandwich Panel Systems by using ISO 5660-1 and EN 13823 Fire Tests (중소형 화재시험(ISO 5660-1 및 EN 13823)을 이용한 샌드위치패널 연소성능 분석)

  • Park, Kye-Won;Im, Hong-Soon;Jeong, Jae-Gun;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • In this study, the combustion properties, which are called the reaction-to-fire's performance, of sandwich panels were tested and analyzed according to both ISO 5660 (cone calorimeter method) and EN 13823 (SBI). Several variables including ignition time, mass loss, heat release rate, smoke production rate and $O_2$ density about four sandwich panels and four core materials (thermal insulation material) were evaluated. Combustion properties' similarity and difference of sandwich panels and core materials were compared by materials and test methods respectively. Finally test results were evaluated by Japanese standard building code, National Building code of Canada and EN 13501-1 as well.

Synergistic Effect of 3A Zeolite on The Flame Retardant Properties of Poplar Plywood Treated with APP

  • Wang, Mingzhi;Ji, Haiping;Li, Li
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.258-264
    • /
    • 2015
  • To evaluate the influence of 3A zeolite on the flame retardant properties of poplar plywood. Ammonium polyphosphate (APP) and 3A zeolite were used as flame retardants to prepare plywood samples. The combustion properties, such as heat release rate (HRR), total heat release (THR), mean CO and $CO_2$ yield, smoke production rate (SPR), and total smoke production (TSP), were characterized by a cone calorimeter. A synergistic effect was observed between 3A zeolite and APP on reducing the HRR and mean CO yield. The probable flame retardation mechanism was proposed.

Flame Retardant Property of PU by the Addition of Phosphorous Containing Polyurethane Oligomers (폴리우레탄을 인계화합물로 해중합한 올리고머의 난연성)

  • Jung, Sunyoung;Kang, Sungku;Cho, Ilsung;Koh, Sungho;Kim, Younhee;Chung, Yeongjin;Kim, Sangbum
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.376-380
    • /
    • 2007
  • Used polyurethane (PU) was chemically degraded by the treatment with flame retardants such as tris(1,3-chloro-2-propyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). Analysis of FT-IR and P-NMR showed that the degraded products (DEP) contained oligourethanes. Rigid polyurethane foam was produced using the DEP as flame retardants. The flammability and thermal stability of recycled rigid polyurethane were investigated. The mechanical properties such as compressive strength of recycled polyurethane were also studied. The recycled polyurethane reduced flammability and enhanced thermal stability over intrinsic polyurethane. Mechanical strength of recycled polyurethane also shows as high as that of intrinsic polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, heat release rate (HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of recycled PU showed a uniform cell morphology as a intrinsic PU.

Combustion Properties of Construction Lumber Used in Everyday Life (생활 주변에서 사용되는 건축용 목재의 연소성)

  • Woo, Tae-young;You, Jisun;Chung, Yeong-jin
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.37-43
    • /
    • 2017
  • The combustion characteristics of four kinds of wood specimens, such as Japan cedar, spruce, lauan, and red pine, were tested using the standards of Cone calorimeter (ISO 5660-1, 2) and smoke density tester (ASTM E 662). Japan cedar caught fire the quickest but the mean heat release rate was the lowest, $58.52kW/m^2$. The mean heat release rate of red pine appeared to be the highest, $71.75kW/m^2$. The lauan and Japan cedar generated relatively large amounts of carbon monoxide while the red pine and the spruce generated relatively large amounts of carbon dioxide. The red pine generated large amounts of smoke and the spruce generated the least amounts of smoke than the other samples. The total smoke release rate in the dynamic method was the highest in red pine and the lowest in spruce. The smoke density of red pine in the static method was highest in the non-flaming and flaming methods. In the non-flaming method, the smoke density of lauan was the second highest, whereas the flaming method was the least. In terms of the heat release rate, the fire risk from red pine was highest among the four test specimens. From the viewpoint of smoke generation, red pine was the most dangerous material in both dynamic and static methods.

A Study on the Fire Characterization of Foam block using Cone-calorimeter and FTIR (콘칼로리미터와 적외선분광계(FTIR)를 이용한 폼블럭의 연소특성에 대한 실험적 연구)

  • Han, Bong-Hoon;Seo, Dong-Ho;Kwon, Young-Hee;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.23-32
    • /
    • 2017
  • Foam block, popularized as the self-interior goods, is susceptible to fire since the main material is the polyethylene flammable synthetic resin. However, it is widely used in homes, offices, and multi-use facilities. In order to understand the fire characteristics of the foam block, two kinds of foam blocks sold in the market (non-fire retardant and fire retardant) were evaluated according to standard of KS F 5660-1 (Reaction to fire test). In addition, the hazard analysis of the gas generated by the combustion of the specimen was performed using the FTIR gas analyzer. The cone calorimeter test showed that the ignition and flame combustion of both two specimens were burned as soon as the radiant heat blocking device was removed, and it was confirmed that the flame could become a rapid propagation factor during the fire. The analysis of the combustion gas through the FTIR gas analyzer showed that both the carbon dioxide and carbon monoxide classified as the common combustion gases and the acrolein, ammonia, and hydrogen cyanide causing serious damage to the human body were detected substantially. This study showed that a foam block product has high ignitionability and generates toxic gases. Hence, it is urgently required to establish the standards used for properly classifying the combustion characteristics of the material on the basis of the use conditions of a foam block product and to prepare the standards on the purpose of use.

Thermal residues analysis of plastics by FT-near infrared spectroscopy (근적외선분광법을 이용한 플라스틱류의 연소 잔류물 분석)

  • Lee, So Yun;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.234-239
    • /
    • 2017
  • Identifying the components of residues that are not completely burned at the sites of fires site can provide valuable information for tracing the causes of fires. In order to clarify the types of plastic combustion residues found at the scenes of fires, we studied the residue formed after the combustion of polyethylene (PE) and acrylonitrile butadiene styrene (ABS). Plastic samples were burned at 200, 300, 350, 400, and $500^{\circ}C$ for 3 min using a cone calorimeter, and the changes in weight and combustion products were observed. The powder products obtained by lyophilization and pulverization of the combustion products obtained at each temperature were analyzed by a Fourier transform-near infrared (FT-NIR) spectrometer. When the PE samples were burned, the weight did not change up to $350^{\circ}C$, however a significant change in the weight could be measured above $400^{\circ}C$. The principal component analysis (PCA) of the FT-NIR spectra of the PE and ABS samples obtained at each temperature confirmed that the combustion residues at each temperature were PE and ABS, respectively. Therefore, the types of unburned plastics found at the sites of fires can be confirmed rapidly by near infrared spectroscopy.

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.