• Title/Summary/Keyword: Cone jet

Search Result 69, Processing Time 0.019 seconds

Heat Transfer from Single and Arrays of Impinging Water Jets(I)-Single Water Jet- (단일수분류 및 수분류군에 의한 열전달(I)-단일수분류-)

  • Eom, Gi-Chan;Lee, Jong-Su;Yu, Ji-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1105-1114
    • /
    • 1997
  • The heat transfer characteristics of free surface water jet impinging normally against a flat uniform heat flux surface were investigated. This deals with the effect of three nozzle configurations (Cone type, Reverse cone type, Vertical circular type) on the local and the average heat transfer. Heat transfer measurements were made for water jet issuing from a nozzle of which exit diameter 8 mm. The experimental conditions investigated are Reynolds number range of 27000 ~ 70000( $V_{O}$=3 ~ 8 m/s), nozzle-to-target plate distances H/D=2 ~ 10, and radial distance from the stagnation point r/D ~ = 0 ~ 7.42. For all jet velocities of H/D=2, the local Nusselt number decreased monotonically with increasing radial distance. However, for H/D from 4 to 10, and for the jet velocity $V_{O}$.geq.7 m/s for Cone type nozzle and $V_{O}$.geq.6 m/s for the other type nozzles, the Nusselt number distributions exhibited secondary peaks at r/D=3 ~ 3.5. For Reverse cone type nozzle and Vertical circular nozzle, the maximum stagnation point heat transfer and the maximum average heat transfer occurs at H/D=8. But for the Cone type nozzle, the maximum stagnation and average heat transfer occurs at H/D=10, 4, respectively. From the optimum nozzle-to-target plate distance, the stagnation and the average heat transfer reveal the following ranking: Reverse cone type nozzle, Vertical circular type nozzle, Cone type nozzle.ozzle.

Comparison of Supersonic Jet Characteristics between Hydrogen and Helium injected by Small-cone-angle Pintle-type Hydrogen Injector (수소 및 헬륨을 이용한 작은 원추각 핀틀형 수소인젝터의 초음속 제트 특성 비교)

  • Gyuhan Bae;Juwan Lim;Jaehyun Lee;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Understanding the fundamental characteristics of supersonic hydrogen jets is important for the optimization of combustion in hydrogen engines. Previous studies have used helium as a surrogate gas to characterize the hydrogen jet characteristics due to potential explosion risks of hydrogen. It was based on the similarity of hydrogen and helium jet structures in supersonic conditions that has been confirmed using hole-type injectors and large-cone-angle pintle-type injectors. However, the validity of using helium as a surrogate gas has not been examined for recent small-cone-angle pintle-type injectors applied to direct-injection hydrogen engines, which form a supersonic hollow cone near the nozzle and experience the jet collapse downstream. Differences in the physical properties of hydrogen and helium could alter the jet development characteristics that need to be investigated and understood. This study compares supersonic jet structures of hydrogen and helium injected by a small-cone-angle (50°) pintle-type hydrogen injector and discusses their differences and related mechanisms. Jet penetration length and dispersion angle are measured using the Schlieren imaging method under engine-like injection conditions. As a result, the penetration length of hydrogen and helium jets showed a slight difference of less than 5%, and the dispersion angle showed a maximum of 10% difference according to the injection condition.

An experimental study of heat transfer in a submerged water jet (서브머지드 단일수분류의 열전달에 관한 실험적 연구)

  • Ohm, Ki-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.101-110
    • /
    • 2005
  • An experimental study of heat transfer of submerged water jet impinging normally on a flat plate is presented. Heat transfer measurements obtained with Reverse cone type nozzle(Rcone) were compared to those obtained with Cone type nozzle(Cone) and Square edged type nozzle(Vert) of the same diameter(D=8mm) for different jet velocities in the range of $3{\sim}7m/s(Re_D=30000{\sim}70000)$ and various nozzle-to target spacings($H/D=2{\sim}10$). The local Nusselt number profiles exhibited a sharp drop for $r/D{\leq}0.5$ and 2nd, 3rd peaks revealed at r/D=2, 3 respectively, followed by a slower decrease there after. The peaks were weakened with increasing the nozzle-to target spacing and decreasing the jet velocity. The stagnation Nusselt number of the Reverse cone type nozzle was larger than those of the other two nozzles for H/D=2. 10, but Cone type nozzle had the highest value for $H/D=4{\sim}8$. Also average Nusselt number of the Reverse cone type nozzle was higher than those of the other two nozzles at $H/D=2{\sim}10$, except for $V_o=7ms$ of H/D=6.

Mode Change from Cone-jet to Dripping in Electrospraying (전기분무 콘제트-드리핑 모드 변환)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2971-2976
    • /
    • 2007
  • The mode change from Taylor cone-jet to dripping in electrospraying has been analytically investigated. The change has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

Impingement heat transfer within 1 row of circular water jets : Part 1-Effects of nozzle configuration (1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제1보, 노즐형상의 영향))

  • 엄기찬;김상필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.50-58
    • /
    • 2000
  • Experiments were carried out to obtain the effects of nozzle configuration and jet to jet spacing on the heat transfer characteristics of single line of circular water jets impinging on a constant heat flux plane surface. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type, and the nozzle arrays are single jet(nozzle dia. 8 mm), 1 row of 3 jets and 1 row of 5 jets. Jet velocities ranging from 3m/s to 8m/s were investigated for the nozzle to target plate spacing of 80 mm. For the Cone and Reverse cone type nozzle arrays, the average Nusselt number of 1 row of 5 jets was larger than that of 1 row of 3 jets at Re$_{D}$<45000, but that of 1 row of 3 jets was larger than that of 1 row of 5 jets at $Reo\le45000$. For the Vertical circular type nozzle, however, the average Nusselt number of 1 row of 3 jets was larger than that of 1 row of 5 jets at all jet velocities. In the condition of fixed mass flow rates, the maximum heat transfer augmentation was obtained for 1 row of 5 jets and was over 2 times larger than that of the single jet for all nozzle configurations. The nozzle configurations that produce the maximum average Nusselt number are as follows: For 1 row of 3 jets, the Vertical circular type at $Reo\le45000$ and the Reverse cone type at $Reo\le45000$. But, they are the Reverse cone type at Re$_{D}$<55000 and the Vertical circular type at$Reo\le55000$ for 1 row of 5 jets.

  • PDF

Impingement heat transfer within 1 row of circular water jets: Part 2-Effects of nozzle to heated surface distance (1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제2보, 노즐-전열면간 거리의 영향))

  • 엄기찬;이종수;김상필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • In a previous paper, we have examined the effects of nozzle configuration and jet to jet spacing on the heat transfer of 1 row of circular water jets. In this paper, experiments have been conducted to obtain the effects of nozzle to target plate distances on the heat transfer of 1 row of 3 jets and 1 row of 5 jets. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type. Nozzle to target plate distance H was varied from 16 mm(H/D=2) to 80mm(H/D=10). For fixed value of mass flow rate and nozzle to target plate distance, larger values of average Nusselt number were obtained for the smaller jet to jet spacing. For the array of water jets, the average heat transfer was decreased slightly with increasing nozzle to target plate distance at low jet velocity of $\textrm{V}_{o}$=3 m/s. However, except for $\textrm{V}_{o}$=8 m/s of 1 row of 5 jets, it was increased with increasing nozzle to target plate distance at high jet velocity of $\textrm{V}_{o}$$\geq$6m/s. We proposed to apply the nozzle configuration of maximum average heat transfer to each nozzle to target plate distance for 1 row of 3 jets, and, it was Reverse cone type nozzle for 1 row of 5 jets(Reynolds number$\geq$36000).

  • PDF

Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray (고유량 정전분무를 위한 다중 홈노즐 특성 연구)

  • Kim, Kyoung-Tae;Kim, Woo-Jin;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.848-854
    • /
    • 2007
  • The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at low flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per $cm^2$ at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode.

Spray Characteristics according to Fluid Properties and Electric Parameters of Electrospray (정전분무의 유체 물성치와 정전 매개변수 따른 분무특성)

  • Kim, JiYeop;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2020
  • Electrospray is used in various industries because it can produce continuous and uniform droplets. However, it is difficult to find optimal spraying condition due to lack of data in various conditions. In this study, various conditions were divided into electric parameters and fluid property. The electric parameters set Nozzle to Substrate(NTS), nozzle diameters and the fluid property set viscosity and conductivity as conditions. In this study, it observes spray patterns, Sauter Mean Diameter(SMD) according to conditions. As a result, fluid properties had a greater effect on the cone-Jet mode than on the nozzle diameter, NTS, and flowrate. All of solutions have Stable cone-jet mode at voltage of 8.5 kV, NTS of 20 mm and nozzle diameter of 0.2 mm. SMD has 27% different depending on viscosity and conductivity. The increased flowrate and viscosity are rising break-up length and thickening jet also jet is thinned by increased conductivity. Experiments have confirmed that the jet is thickened by increased flowrate and viscosity, and that the jet is thinned by conductivity.

Characteristics of the electrospraying combustion using grooved nozzle (홈노즐을 이용한 정전분무 확산 연소 특성에 관한 연구)

  • Kim, Woo-Jin;Kim, Kyoung-Tae;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2366-2371
    • /
    • 2007
  • Spray combustion characteristics of a conducting fuel electrospray have been studied for clean combustion technology. The multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. Charged micro droplets can be obtained in almost uniform size during operating the electrospray in the cone-jet mode. This experiment device set up the multiplexed grooved nozzle system with the extractor. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. This electrospray system was applied to the diffusion combustion. It is the first step to discover the diffusion combustion characteristics of the electrospray. In case of the single grooved nozzle electrospray, the diffusion flames are occurred at each jet of grooved mode and they are quite stable. The exhaust gas analysis was indicated that there is the critical point which can make very stable diffusion combustion.

  • PDF

Analysis of Colloid Thrusters for Nano-satellite Propulsion (나노인공위성 추진용 콜로이드 추력기 해석)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.175-178
    • /
    • 2007
  • The mode transition from cone-jet to dripping in colloid thruster operation has been analytically investigated. The transition has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF