• Title/Summary/Keyword: Conductive shield

Search Result 23, Processing Time 0.035 seconds

Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic

  • Kim, Hong Gun;Shin, Hee Jae;Kim, Gwang-Cheol;Park, Hyung Joon;Moon, Ho Joon;Kwac, Lee Ku
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.268-276
    • /
    • 2014
  • Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of $0^{\circ}$, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and $90^{\circ}$, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was $90^{\circ}$, which was perpendicular to the electromagnetic wave flow, as compared to $0^{\circ}$, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.

A Study on the Electromagnetic Shielding Characteristics of Crash Pad Using Electrically Conductive Powders and Al-coated Glass Fiber as Filler in Automotive (전기전도성 분말과 알루미늄 코팅 유리섬유를 사용한 자동차용 크래쉬패드의 전자파 차폐 특성에 관한 연구)

  • Cho, Hong;Jeoung, Sun-Kyoung;Kim, Byeong-Woo
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.124-130
    • /
    • 2014
  • The automotive industry is moving from the internal combustion engine to electric drive motors. Electric motors uses a high voltage system requiring the development of resources and components to shield the system. Therefore, in this study, we analyze electromagnetic interference (EMI) shielding effectiveness (SE) characteristics of an auto crash pad according to the ratio of electrically conductive materials and propylene. In order to combine good mechanical characteristics and electromagnetic shielding of the automotive crash pad, metal-coated glass fiber (MGF) manufacturing methods are introduced and compared with powder-type methods. Through this study, among MGF methods, we suggest that the chopping method is the most effective shielding method.

Calculation and Mitigation of Magnetic Field Produced by Straight Line-Conductor with Finite Length (유한장 직선도체에 의한 자계의 계산 및 감소대책)

  • Kang, Dae-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.57-67
    • /
    • 2011
  • Purpose of this study is to find the mitigation method of magnetic field by finite length multi-conductors such as indoor distribution lines and to be applicable to design of the distribution lines. For this purpose, exact formula about the components $B_x$, $B_y$, $B_z$ of magnetic field need in case of straight line-conductor with finite length forward any direction. In this study simple formula of the components were deduced and by using these formula magnetic fields for various models of line-configurations were calculated. And also a calculation method of induced currents in conductive shield was presented and using this method, programing of calculation is relatively easy and calculation time is short. The magnetic field after cancellation by these induced currents was calculated. All of calculations were performed by Matlab 7.0 programs. Through the calculation results it could be obtained followings for the mitigation of magnetic fields. The separation between conductors ought to be smaller than smaller as possible. In case of 3-phase, delta configuration is more effective than flat configuration. In case of 3-phase, unbalanced currents ought to be reduced as possible.. In case of more than two circuits of 3-phase, adequate locations of each phase-conductor such as rotating configuration of 3-phase conductors are more effective. The magnetic shielding effect of the conductive shielding sheet is very high.

An Experimental Study on Development of EMP Shielding Concrete Using Carbon-Based Materials and Industrial By-Products (카본계 재료 및 산업부산물을 활용한 EMP 차폐 콘크리트 개발에 관한 실험적 연구)

  • Min-Sung Kim;Cheol-Hyun Yoon;Seung-Ho Byun;Tae-Beom Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2023
  • In this research, The basic physical properties and EMP shielding performance by thickness were evaluated for optimum composition of EMP shield concrete that can be applied on-site by mixing carbon-based materials with high conductivity into concrete that uses electric furnace oxidized slag (EOS). As a result of the evaluation, it was confirmed that the slump decreased as the amount of mixed carbon fib er (CF) increased, and increased when milled carb on (MCF) was mixed. As for the compressive strength, it was confirmed that EOS enhanced the strength compared to NA, and it was confirmed that the strength decreased when CF and MCF were mixed. As the thickness of the EMP shielding measurement increases, the shielding rate increases, and it was confirmed that the type of conductive material and the thickness of the test specimen have a greater influence on the shielding rate than the Amount of conductive material added. As a result of a comparative evaluation, EOS CF 0.2 is considered suitable for EMP shield concrete formulation.

Analysis of Partial Discharge in High Voltage Motor Model Coils (고압전동기 모델 코일의 부분방전 분석)

  • Kim, Hee-Dong;Kong, Tae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2091-2093
    • /
    • 2005
  • Five model coils of 6.6kV motor were manufactured with several defects. These stator coils have artificial defects such as void of groundwall insulation, removal of semi-conductive coating and damage of strand insulation. Epoxy-mica coupler(80 pF) was connected to five model coil terminals, respectively The voltage applied to the coils was 3.81kV, 4.76kV, 6.0kV and 6.6kV. Partial discharge(PD) tests performed in the laboratory and shield room. Digital PD detector (PDD) and turbine generator analyzer(TGA) were used to measure PD activity. TGA summarizes each plot with two quantities such as the normalized quantity number(NQN) and the peak PD magnitude(Qm). The PD levels in pC were measured with PDD. PD patterns of model coils were indicated the internal and slot discharges. PD patterns coincide with both PDD and TGA.

  • PDF

Performance Evaluation of 154 kV Separable Dry Type Plug-in Connector (154 kV 건식형 지중종단접속함의 성능 평가)

  • Kim, Seok-Sou;Park, Young-Chang;Oh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.470-471
    • /
    • 2007
  • Underground connectors in 154kV for the connection between power cables and power equipments represent a greater part of power system stability and reliability. This paper presents the performance evaluation of 154kV separable dry type plug-in connector of a company in Japan for transformers and Gas Insulated Switchgear. And the possibility of the application on domestic underground line was considered.

  • PDF

Analysis of Electromagnetic Wave Shielding Effectiveness from Electrical Conductivity of Metallized Conductive Sheets (전도성 금속 피복재의 전기전도도에 의한 전자파 차폐효과 분석)

  • Kim, Yeong-Sik;Choe, Ik-Gwon;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.913-918
    • /
    • 1999
  • As an alternative evaluation method of electromagnetic shielding properties, the material parameters are considered in determining the qualitative value of shielding effectiveness. The specimens are metallized nylon fabrics with the thickness of about 0.1 mm and the electrical conductivities in the range from 6.4$\times$10~2.4$\times$10(sup)5 mhos/m. On the basis of shielding theory, the shielding effectiveness (which is a sum of reflection loss and absorption loss) has been determined from the material parameters of the barrier sheets. For the conductive fabrics, the dominant shield mechanism is predicted to be reflection loss, which shows an increasing function of electrical conductivity. Comparing these theoretical value with the directly measured surface impedances, the error range is found to be within 10 dB, which demonstrates that the proposed material-parameters method can be a convenient way to determine the electromagnetic shielding properties.

  • PDF

Analysis of Partial Discharge in High Voltage Motor Model Coils (고압전동기 모델 코일에서 부분방전 분석)

  • Kim, Hee-Dong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.4
    • /
    • pp.178-182
    • /
    • 2006
  • Five model coils of 6.6 kV motor were manufactured with several defects. These stator coils have artificial defects such as void of groundwall insulation, removal of semi-conductive coating and damage of strand insulation. Epoxy-mica coupler(80 pF) was connected to five model coil terminals. The voltage applied to the coils was 3.81 kV, 4.76 kV, 6.0 kV and 6.6 kV, respectively. Partial discharge(PD) tests performed in the laboratory and shield room. Digital PD detector(PDD) and turbine generator analyzer(TGA) were used to measure PD activity. TGA summarizes each plot with two quantities such as the normalized quantity number(NQN) and the peak PD magnitude(Qm). The PD levels in pC were measured with PDD. PD patterns of model coils were indicated the internal and slot discharges. PD patterns are consistent with the result of measurement using PDD and TGA instruments. AC breakdown test was performed on five model coils in order to confirm the result of PD measurements. All the failures were located in a line-end coil at the exit from the core slot.

Deposition of aluminum nitride nanopowders and fabrication of superhydrophobic surfaces (질화알루미늄 나노분말의 부착과 이를 활용한 초소수성 표면 제작)

  • Kwangseok Lee;Heon-Ju Choi;Handong Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • Superhydrophobic surfaces have been expected to be able to provide considerable performance improvements and introduce innovative functions across diverse industries. However, representative methods for fabricating superhydrophobic surfaces include etching the substrate or attaching nanosized particles, but they have been limited by problems such as applicability to only a few materials or low adhesion between particles and substrates, resulting in a short lifetime of superhydrophobic properties. In this work, we report a novel coating technique that can achieve superhydrophobicity by electrophoretic deposition of aluminum nitride (AlN) nanopowders and their self-bonding to form a surface structure without the use of binder resins through a hydrolysis reaction. Furthermore, by using a water-soluble adhesive as a temporary shield for the electrophoretic deposited AlN powders, hierarchical aluminum hydroxide structures can be strongly adhered to a variety of electrically conductive substrates. This binder-free technique for creating hierarchical structures that exhibit strong adhesion to a variety of substrates significantly expands the practical applicability of superhydrophobic surfaces.

Design and characterization of conductive transparent filter using [TiO2|Ti|Ag|TiO2] multilayer ([TiO2|Ti|Ag|TiO2] 다층구조를 이용한 전도성 투과필터의 설계 및 특성분석)

  • Lee, Seung-Hyu;Lee, Jang-Hoon;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • We have designed conductive transparent filters using a low-emissivity coating such as [dielectric|Ag|dielectric] for display applications. The design is the repetition of [$TiO_{2}$|Ti|Ag |$TiO_{2}$] to increase the transmittance in the visible and decrease the transmittance in the near IR. The conductive transparent filters are deposited by a radio frequency(RF) magnetron sputtering system. The optical, structural and electrical properties of the filters were investigated and the optical spectra are compared with simulated spectra. The thickness of the deposited Ag films is above 13 ㎚ to increase the conductivity and that of $TiO_{2}$ films is 24 ㎚ to increase the transmittance in the visible range. Ti blockers are employed to prevent the Ag films from being oxidized by an oxygen gas during the reactive sputtering process. Also, it is shown that the thicker Ti film is necessary as the period increases. Finally, a filter with repetition of the basic structure three times shows the better cut-off near infrared(NIR) and the sheet resistance as low as 2Ω/□ which is enough to shield an unnecessary electromagnetic waves for a display panel.