• Title/Summary/Keyword: Conductive Concrete

Search Result 45, Processing Time 0.025 seconds

Evaluation of the Exothermic Properties and Reproducibility of Concrete Containing Electro-conductive Materials (전기전도성 재료를 혼입한 콘크리트의 발열특성 및 재현성 평가)

  • Song, Dong-Geun;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2016
  • From 1990's, a study on the development of exothermic concrete, a concrete which electro-conductive material is mixed, has been proceeded. However, due to the difficulty of exothermic reproducibility of concrete specimen, the study has been unable to continuously carried out. Accordingly, this study was focused on developing an exothermic concrete for the purpose of snow-melting material. Cement paste and mortar specimens mixed with graphite, conductive metal powder and chemical admixture were made. The evaluation of exothermic performance and reproducibility was conducted under $-2^{\circ}C$ of low temperature. In addition, micro-chemical analysis was carried out to investigate a cause of exothermic reproducibility. As a test result, the specimen mixed with graphite and superplasticizer with air entrained showed the best exothermic performance and reproducibility. Through micro-chemical analysis, it is judged that polymer or methacrylic acid (MAA), the contents inside the superplasticizer with air entrained, gave exothermic reproducibility by generating the electrochemical reaction with graphite.

An Experimental Study on the Development of Electromagnetic Shielding Concrete Wall System Using Conductive Materials for Shielding High-altitude Electromagnetic Pulse(HEMP) (HEMP를 대상으로 한 도전성 재료 혼입 콘크리트 전자파 차폐 벽체 시스템 개발에 관한 실험적 연구)

  • Choi, Hyun-Jun;Choi, Hyun-Kuk;Kim, Jae-Young;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.20-21
    • /
    • 2016
  • In this study, the shielding properties of concrete with conductive materials as shielding material for electromagne- tic pulse(EMP) within 10kHz~18GHz were investigated. The shielding effectiveness of specimens were compared with different entrained materials. The shielding effectiveness were determined according to MIL-STD-188-125-1, IEEE-STD-299 at 28 days of concrete curing. The results of shielding effectiveness did not meet the criteria(80dB) severely.

  • PDF

The Electrical Properties of Cementitious Composites with Carbon Black and MWCNT for the Development of Cement-Based Battery (시멘트기반 배터리 개발을 위한 Carbon Black 및 MWCNT 혼입 시멘트 복합체의 전기적 특성 분석)

  • Lee, Joo-Ha
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.212-213
    • /
    • 2018
  • The cementitious composites have been developed to satisfy various demands of the construction market. The conductive concrete, which is a carbon-based cementitious composite, was used for the deicing or the detecting the internal crack. The cement-based battery is a technology that applies the basic concept of the alkaline battery to these conductive concretes. The cementitious composites could have a function as batteries, through a mixing of anode and cathode, which were consist of the zinc and manganese dioxide powder. The carbon-based materials, which have a significant effect on electrical properties, could be considered as the main variable in cement-based batteries. Therefore, in this study, the effects of carbon-based materials were investigated. Two types of materials, including the Carbon black and Multi-walled carbon nanotube(MWCNT), were considered as the main variables. From the experiment results, the electrical characteristics such as resistance, voltage, and current were compared according to the age.

  • PDF

Crack Monitoring of RC beam using Surface Conductive Crack Detection Patterns based on Parallel Resistance Network (병렬저항회로에 기반한 표면 전도성 균열감지패턴을 사용한 콘크리트 휨 부재의 균열 감지 )

  • Kyung-Joon Shin;Do-Keun Lee;Jae-Heon Hong;Dong-Chan Shin;Jong-Hyun Chae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.67-74
    • /
    • 2023
  • A large number of concrete structures are built and used around the world. To ensure their safe and continuous use, these structures require constant inspection and maintenance. While man-powered inspection and maintenance techniques are efficient, they can only provide intermittent status checks at the time of on-site inspection. Therefore, there is a growing need for a system that can continuously monitor the condition of the structure. A study was conducted to detect cracks and damage by installing a conductive coating on the surface of a concrete structure. A parallel resistance pattern that can monitor the occurrence and progression of cracks was developed by reflecting the structural characteristics of concrete structure. An empirical study was conducted to veryfy the application of the proposed method. The crack detection pattern was installed on the reinforced concrete beams, and the crack monitoring method was verified through applying a load on the beams.

Literature Review on Material Development and Performance Evaluation Method for EMP Shielding Concrete (EMP 차폐 콘크리트 개발 및 성능평가 방법에 관한 문헌 연구)

  • Lee, Woong-Jong;Lee, Hwan;Kim, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.67-76
    • /
    • 2020
  • The purpose of this study was to derive the directionality of technology development of high-power electromagnetic pulse (EMP) shielding concrete and standardization of a shielding performance evaluation method. Because the EMP shielding mechanism of concrete has not been identified clearly, and the verification method for EMP shielding performance has not been standardized, it is difficult to compare the research results between researchers. The development direction of EMP shielding concrete was derived from a consideration of the electromagnetic wave loss mechanism of metal. The standardization direction for verifying the EMP shielding performance of concrete was derived from a consideration of the electrical properties of concrete and the shielding performance evaluation methods of previous studies. As a result, the development of electrically conductive concrete is required, and test methods classified by the electromagnetic wave loss mechanism should be applied. For quality verification, the development of EMP shielding concrete will be feasible and its performance can be evaluated if a test method referencing the generalized shielding evaluation method (MIL-STD, etc.) is applied.

Fundamental Study of Deicing Pavement System Using Conductive Materials (전도성 재료를 사용한 도로결빙방지 포장시스템 개발을 위한 기초연구)

  • Lee, Kanghwi;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES : The purpose of this study is to develop a deicing pavement system using carbon fiber or graphite with high electrical conductivity and thermal conductivity. METHODS: Based on literature reviews, in general, conventional concrete does not exhibit electrical and thermal conductivity. In order to achieve a new physical property, experiments were conducted by adding graphite and carbon fiber to a mortar specimen. RESULTS: The result of the laboratory experiment indicates that the addition of graphite can significantly reduce the compressive strength and improve the thermal conductivity of concrete. In the case of carbon fiber, however, the compressive strength of the concrete is slightly increased, whereas, the thermal conductivity is slightly decreased against the plain mortar irrespective of the length of the carbon fiber. In addition, a mixture of the graphite and carbon fiber can greatly improve the degree of heating test. CONCLUSIONS : Various properties of cement mortar change with the use of carbon fiber or graphite. To enhance the conductivity of concrete for deicing during winter, both carbon fiber and graphite are required to be used simultaneously.

Electromechanical Relation of metallic heat wires and Strain Estimation of Structural Tendons (금속계열선의 전기기계적 상관작용과 긴장재의 변형률 예측)

  • Zi, Goang-Seup;Jun, Ki-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.570-573
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. We propose a new kind of prestressing tendons whose stress can be monitored.

  • PDF

Performances of Prepacked-Type Thermal Conductive Backfills Incorporating Byproduct Powders and Aggregates (부산물 분체 및 굵은 골재를 활용한 프리팩트형 열전도성 되메움재의 성능)

  • Sang-Min Jeon;Young-Sang Kim;Ba-Huu Dinh;Jin-Gyu Han;Yong-Sun Ryu;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • This study aims to develop a thermally conductive backfill by applying the prepacked concrete concept, in which a coarse aggregate with relatively high thermal conductivity was first filled and then the voild filled with grout. Backfill with improved thermal conductivity can increase the heat exchange efficiency of underground heat exchangers or underground transmission facilities. The backfills was prepared by using crushed concrete as the coarse aggregate, fly ash-based grout, and a small amount of cement for solidification. The results of this study showed that the fly ash-cement-sand-based grout with a flow of at least 450 mm accor ding to ASTM D 6103 could fill the void of pr epactked coar se aggr egates with a maximum size of 25 mm. The thermal conductivity of the backfil with coarse aggregate was over 1.7 W/m·K, which was higher than that of grout-type backfills.