• Title/Summary/Keyword: Conduction losses

Search Result 218, Processing Time 0.024 seconds

A Soft-Switching Totem-pole Bridgeless Boost Power Factor Correction Rectifier Having Minimized Conduction Losses (소프트 스위칭이 가능한 토템폴 브리지리스 역률보상회로)

  • Lee, Young-Dal;Kim, Chong-Eun;Baek, Jae-Il;Kim, Dong-Kwan;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.213-215
    • /
    • 2018
  • 본 논문에서는, 경부하 조건에서 저감된 스위칭 손실과 중부하 이상 조건에서 영전압 스위칭을 통해 높은 효율을 가지는 토템폴 브리지리스 역률보상회로를 제안한다. 토템폴 브리지리스 역률보상회로는 기존 브리지 다이오드를 포함한 역률보상회로의 단점인 도통패스 구간의 비교적 많은 소자 수를 통한 도통손실이 다소 큰 단점을 보완한 회로이다. 하지만, 토템폴 브리지리스 역률보상회로는 여전히 하드 스위칭을 통한 손실과 주 파워링 다이오드의 역회복 손실로 인한 단점을 지니고 있게 되며, 그로 인해 현재로써는 높은 효율과 안정적인 동작을 위해서는 부득이 GaN FET를 적용한 개발이 대부분이다. Full 부하 조건의 전류 용량을 고려하여 높은 전류 정격을 가지는 GaN FET를 주 스위치로 활용할 경우, 전류용량과 비례하여 기생 커패시턴스에 의한 손실이 커지기 때문에 경부하 조건에서 높은 효율을 확보하기가 다소 어렵다. 또한 구조상 물리적으로 여전히 하드 스위칭 동작을 할 수 밖에 없기 때문에 서버용 전원장치에서 요구하는 높은 효율을 달성하는데 한계를 지니며 높은 비용이 요구되는 단점을 지니게 된다. 이를 해결하기 위해, 제안하는 회로는 간단한 회로를 통해 경부하 조건에서 저감된 스위칭 손실과 중부하 이상 조건에서 소프트 스위칭을 만족하여 전체 부하 조건에서 기존의 GaN FET을 활용한 토템폴 구조 대비 높은 효율을 가지게 된다. 또한, 토템폴 구조임에도 불구하고 중부하 이상 영역에서 소프트 스위칭 동작을 통해 주 스위치를 비교적 저렴하고 신뢰성이 검증된 Si-MOSFET을 적용할 수 있다는 장점을 지닌다. 제안하는 회로의 효용성을 증명하기 위해, 하이라인 입력 전압과 750W 출력 조건에서 실험을 진행하였다.

  • PDF

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Optimal Selection of Arm Inductance and Switching Modulation for Three-Phase Modular Multilevel Converters in Terms of DC Voltage Utilization, Harmonics and Efficiency

  • Arslan, Ali Osman;Kurtoglu, Mehmet;Eroglu, Fatih;Vural, Ahmet Mete
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.922-933
    • /
    • 2019
  • The arm inductance (AI) of a modular multilevel converter (MMC) affects both the fault and circulating current magnitudes. In addition, it has an impact on the inverter efficiency and harmonic content. In this study, the AI of a three-phase MMC is optimized in a novel way in terms of DC voltage utilization, harmonics and efficiency. This MMC has 10 submodules (SM) per arm and the power circuit topology of the SM is a half-bridge. The optimum AI is adopted and verified in an MMC that has 100 SMs per arm. Then the phase shift (PS) and phase disposition (PD) pulse width modulation (PWM) methods are investigated for better DC voltage utilization, efficiency and harmonics. It is found that similar performances are obtained for both modulation techniques in terms of DC voltage utilization. However, the total harmonic distortion (THD) of the PS-PWM is found to be 0.02%, which is slightly lower than the THD of the PD-PWM at 0.16%. In efficiency calculations, the switching and conduction losses for all of the semiconductor are considered separately and the minimum efficiency of the 100-SM based MMC is found to be 99.62% for the PS-PWM and 99.64% for the PD-PWM with the optimal value of the AI. Simulation results are verified with an experimental prototype of a 6-SM based MMC.

Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response

  • Kang, Suhee;Pawar, Rajendra C.;Park, Tae Joon;Kim, Jin Geum;Ahn, Sung-Hoon;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • We have successfully fabricated 3D (3-dimensional) nanostructures of $TiO_2$ coated with a $g-C_3N_4$ layer via hydrothermal and sintering methods to enhance photoelectrochemical (PEC) performance. Due to the coupling of $TiO_2$ and $g-C_3N_4$, the nanostructures exhibited good performance as the higher conduction band of $g-C_3N_4$, which can be combined with $TiO_2$. To fabricate 3D nanostructures of $g-C_3N_4/TiO_2$, $TiO_2$ was first grown as a double layer structure on FTO (Fluorine-doped tin oxide) substrate at $150^{\circ}C$ for 3 h. After this, the $g-C_3N_4$ layer was coated on the $TiO_2$ film at $520^{\circ}C$ for 4 h. As-prepared samples were varied according to loading of melamine powder, with values of loading of 0.25 g, 0.5 g, 0.75 g, and 1 g. From SEM and TEM analysis, it was possible to clearly observe the 3D sample morphologies. From the PEC measurement, 0.5 g of $g-C_3N_4/TiO_2$ film was found to exhibit the highest current density of $0.12mA/cm^2$, along with a long-term stability of 5 h. Compared to the pristine $TiO_2$, and to the 0.25 g, 0.75 g, and 1 g $g-C_3N_4/TiO_2$ films, the 0.5 g of $g-C_3N_4/TiO_2$ sample was coated with a thin $g-C_3N_4$ layer that caused separation of the electrons and the holes; this led to a decreasing recombination. This unique structure can be used in photoelectrochemical applications.

Optimal Design of a Coil for Improved Heating Efficiency of Electric Induction Boiler (전기유도보일러의 발열효율개선을 위한 권선최적설계)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.476-482
    • /
    • 2019
  • Regulatory protocols such as the Convention on Climate Change and the regulation of greenhouse gas emissions act as catalysts for the development of high-efficiency energy equipment and the efficient use of energy. Among the fields where energy consumption is high, the electric heating equipment is not efficient. The electric boiler mainly uses a method of circulating water by contacting the heater. When the existing electric boiler is used, the water minerals are contacted with the high-temperature heater to be carbonized and adsorbed, thereby promoting the corrosion of the heater and lowering the efficiency of the heater. For this reason, an electric induction boiler, which has high energy efficiency and is applied to an induction heating system that can uniformly heat the object to be heated rather than conduction or convection heating, is in the limelight. This method induces a boiler pipe And it is recognized as an alternative that can solve the problem that occurs when heating is performed by direct heating. Despite the fact that research on induction heating has been conducted for a relatively long period of time, there have been few studies on the electrothermal technology using induction heating. Therefore, in this paper, to improve the heat efficiency of electric induction boiler, the influence of the cross sectional area, number of windings and winding layers is analyzed by finite element method through parametric study method. The method of finding the design point which maximizes the total loss is proposed by the alternating winding design method which can maximize the heat generation by analyzing copper and iron losses.

A Study on high efficiency Bridgeless PFC Converter applied SiC SBD (SiC SBD 적용한 고효율 Bridgeless PFC 컨버터에 대한 연구)

  • Jeon, Joon-Hyeok;Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.449-455
    • /
    • 2019
  • This paper proposes a flyback diode of bridgeless PFC converter as SiC SBD (Schottky Barrier Diode) to achieve high efficiency. In addition, through the explanation of the operation principle of the bridgeless PFC converter, the conduction section of the freewheel diode is shown in the bridgeless PFC converter to verify the contribution of system loss due to the loss of the freewheel diode. The advantages of the SiC SBD device's physical properties and the reverse recovery characteristics are explained, and the efficiency is measured by measuring the turn-on and turn-off losses. The loss was calculated. The simulation results were calculated in consideration of device characteristics and verified through the waveform analysis and comparison of the actual system. In order to consider the device characteristics, the simulation was conducted using the thermal module of PSIM. As a result of the prototype test, the turn-on loss was 0.608W and the turn-off loss was 21.62W, resulting in the total switching loss of 22.228W. The comparison of the two results proved the validity of the experimental method. In addition, a high efficiency of 94.58% is achieved.

Hearing Loss in the Workers Exposed to Organic Solvents and Noise (유기용제와 소음에 폭로된 근로자들의 청력 손실)

  • 김영기;이용환
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.136-145
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of organic slovents and noise on hearing loss. We selected organic solvents exposed group of 32 cases, noise exposed group of 31 cases, both noise and solvent exposed group of 31 cases, and control group of 53 cases and studied the relation between exposure level of noise and organic solvents and degree of hearing loss. The results were as follows. The subjects under investigation were exposed to noise and organic solvents under threshold limit values and the amount of urinary hippuric acid excretion were also under biological exposure indices. In case of noise, both noise and organic solvents exposed group and noise exposed group were more exposed than organic solvents exposed group(p<0.05). When urinary hippuric acid excretion were concerned, both noise iud organic solvents exposed group and organic solvents exposed group showed higher values than noise exposed group(p<0.05). In comparison of mean auditory threshold values by frequency, on the air conduction test, both noise and organic solvents exposed group showed significantly higher hearing loss than noise exposed group in 500Hz of right ear, 500 and 2000Hz of left ear(p<0.05). Forty-three cases among 147 subjects were regarded as hearing loss group and average age(42.6years) of hearing loss group was higher than normal groups average age of 38.0 years. Urinary hippuric acid excretions of hearing loss group were significantly higher than normal group(p<0.05). Thirty-eight percent(12cases) of noise exposed group, 40.6 $\%$(13cases) of organic solvents exposed group, 51.6 $\%$(16cases) of both noise and organic solvents exposed group, and 3.8 $\%$(2cases) of unexposed group were regarded as hearing losers. Exposed groups showed higher incidence of hearing loss than unexposed group but there were no significant differences among the exposed groups. The variables showing significant correlation with hearing loss were age and the amount of hippuric acid in urinary excretion. When age were adjusted for the purpose of seeing the effects of hearing losses due to organic solvent, urinary excretion of hippuric acids was the only variable with significant correlation with hearing loss (p<0.05). When odds ratio to hearing loss between control and exposed groups was considered, noise exposed group showed 6.1 times (95 $\%$ CI: 3.3-8.7), organic solvents exposed group showed 7.4 times (95 $\%$ CI: 3.5-14.6) and both noise and organic solvents exposed group showed 17.2 times(95% CI: 5.6-31.8) higher values than unexposed group(p<0.01). Above results suggest that health screening test of hearing loss is also needed in organic solvents exposed workers.

  • PDF