• Title/Summary/Keyword: Conduction loss

Search Result 446, Processing Time 0.026 seconds

A method for uniform current distribution of HTS cable using Inter-Phase Transformers (Inter-Phase Transformers를 이용한 고온초전도 케이블의 층간 전류 등분배 방안)

  • Choi, Yong-Sun;Yim, Seong-Woo;Sim, Jung-Wook;Hwang, Si-Dole;Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.973-975
    • /
    • 2003
  • Uniform current distribution among conductor layers in HTS cables using IPTS (inter-phase transformers) was proposed. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTS, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTS were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers.

  • PDF

An Efficiency-Optimized Modulation Strategy for Dual-Active-Bridge DC-DC Converters Using Dual-Pulse-Width-Modulation in the Low Power Region

  • Byen, Byeng-Joo;Ban, Chung-Hwan;Lim, Young-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1413-1421
    • /
    • 2017
  • In order to control the output voltage in a dual active bridge converter, this paper establishes a theoretical inductor current equation for a dual-pulse-width-modulation scheme that ensures low switching loss. It also proposes a modulation strategy that minimizes conduction loss. When compared to the conventional single-pulse-width-modulation strategy, the proposed approach can reduce the inductor current RMS and improve efficiency in the low power region, as verified through simulation and experimental results.

Analyzing clinical and genetic aspects of axonal Charcot-Marie-Tooth disease

  • Kwon, Hye Mi;Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.83-93
    • /
    • 2021
  • Charcot-Marie-Tooth disease (CMT) is the most common hereditary motor and sensory peripheral neuropathy. CMT is usually classified into two categories based on pathology: demyelinating CMT type 1 (CMT1) and axonal CMT type 2 (CMT2) neuropathy. CMT1 can be distinguished by assessing the median motor nerve conduction velocity as greater than 38 m/s. The main clinical features of axonal CMT2 neuropathy are distal muscle weakness and loss of sensory and areflexia. In addition, they showed unusual clinical features, including delayed development, hearing loss, pyramidal signs, vocal cord paralysis, optic atrophy, and abnormal pupillary reactions. Recently, customized treatments for genetic diseases have been developed, and pregnancy diagnosis can enable the birth of a normal child when the causative gene mutation is found in CMT2. Therefore, accurate diagnosis based on genotype/phenotypic correlations is becoming more important. In this review, we describe the latest findings on the phenotypic characteristics of axonal CMT2 neuropathy. We hope that this review will be useful for clinicians in regard to the diagnosis and treatment of CMT.

A Study on Influence of Synchronous Rectification Switch on Efficiency in Totem Pole Bridgeless PFC (토템폴 브리지리스 PFC에서 동기정류 스위치의 효율 영향에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.108-113
    • /
    • 2021
  • In this paper, a totem pole PFC was structured in two methods with FET and diode for low-speed switch while GaN FET was used for high-speed switch. Internal power loss, power conversion efficiency and steady-state characteristics of the two methods were compared in the totem pole bridgeless PFC circuit which is widely applied in large-capacity and high-efficiency switching rectifier of 500W or more. In order to compare and confirm the steady-state characteristics under equal conditions, a 2kW class totem pole bridgeless PFC was constructed and the experimental results were analyzed. From the experimental results, it was confirmed that the low-speed switch operation has a large difference in efficiency due to the internal conduction loss of the low-speed switch at a low input voltage. Especially, input power factor and load characteristic showed no difference regardless of the low-speed switch operation.

Template-directed Atomic Layer Deposition-grown $TiO_2$ Nanotubular Photoanode-based Dye-sensitized Solar Cells

  • Yu, Hyeon-Jun;Panda, Sovan Kumar;Kim, Hyeon-Cheol;Kim, Myeong-Jun;Yang, Yun-Jeong;Lee, Seon-Hui;Sin, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.239.1-239.1
    • /
    • 2011
  • Dye sensitized solar cells (DSC) are promising devices for inexpensive, nontoxic, transparent, and large-scale solar energy conversion. Generally thick $TiO_2$ nanoporous films act as efficient photoanodes with their large surface area for absorbing light. However, electron transport through nanoparticle networks causes the slowdown and the loss of electron transport because of a number of interparticle boundaries inside the conduction path. We have studied DSCs with precisely dimension-controlled $TiO_2$ nanotubes array as photoanode. $TiO_2$ nanotubes array is prepared by template-directed fabrication method with atomic layer deposition. Well-ordered nanotubes array provides not only large surface area for light absorbing but also direct pathway for electrons with minimalized grain boundaries. Large enlongated anatase grains in the nanotubes could enhance the conductivity of electrons, but also suppress the recombination with holes through defect sites during diffusion into the electrode. To study the effect of grain boundaries, we fabricated two kinds of nanotubes which have different grain sizes by controlling deposition conditions. And we studied electron conduction through two kinds of nanotubes with different grain structures. The solar cell performance was studied as a function of thickness and grain structures. And overall solar-to-electric energy conversion efficiencies of up to 7% were obtained.

  • PDF

Electrical Transport Properties of La0.5Sr0.5CrO3 Ceramics (La0.5Sr0.5CrO3 세라믹스의 전기전도특성)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • The electrical transport properties of $La_{0.5}Sr_{0.5}CrO_3$ below room temperatures were investigated by dielectric, dc resistivity, magnetic properties and thermoelectric power. Below $T_c$, $La_{0.5}Sr_{0.5}CrO_3$ contains a dielectric relaxation process in the tangent loss and electric modulus. The $La_{0.5}Sr_{0.5}CrO_3$ involves the transition from high temperature thermal activated conduction process to low temperature one. The transition temperature corresponds well to the Curie point. The relaxation mechanism has been discussed in the frame of electric modulus spectra. The scaling behavior of the modulus suggests that the relaxation mechanism describes the same mechanism at various temperatures. The low temperature conduction and relaxation takes place in the ferromagnetic phase. The ferromagnetic state in $La_{0.5}Sr_{0.5}CrO_3$ indicates that the electron - magnon interaction occurs, and drives the carriers towards localization in tandem with the electron - lattice interaction even at temperature above the Curie temperature.

High Efficiency Alternating Current Driver for Capacitive Loads Using a Current-Balance Transformer

  • Baek, Jong-Bok;Cho, Bo-Hyung;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2011
  • This paper proposes a new alternating current driving method for highly capacitive loads such as plasma display panels or piezoelectric actuators, etc. In the proposed scheme, a current balance transformer, which has two windings with the same turn-ratio, provides not only a resonance inductance for energy recovery but also a current balance among all of the switching devices of the driver for current stress reduction. The smaller conduction loss than conventional circuits occurs due to the dual conduction paths which are parallel each other in the current balance transformer. Also, the leakage inductances of the transformer are utilized as resonant inductors for energy recovery by the series resonance to the capacitive load. Furthermore, the resonance contributes to the small switching losses of the switching devices by soft-switching operation. To confirm the validity of the proposed circuit, prototype hardware with a 12-inch mercury-free flat fluorescent lamp is implemented. The experimental results are compared with a conventional energy-recovery circuit from the perspective of luminance performances.

Implementation of an Interleaved AC/DC Converter with a High Power Factor

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.377-386
    • /
    • 2012
  • An interleaved bridgeless buck-boost AC/DC converter is presented in this paper to achieve the characteristics of low conduction loss, a high power factor and low harmonic and ripple currents. There are only two power semiconductors in the line current path instead of the three power semiconductors in a conventional boost AC/DC converter. A buck-boost converter operated in the boundary conduction mode (BCM) is adopted to control the active switches to achieve the following characteristics: no diode reverse recovery problem, zero current switching (ZCS) turn-off of the rectifier diodes, ZCS turn-on of the power switches, and a low DC bus voltage to reduce the voltage stress of the MOSFETs in the second DC/DC converter. Interleaved pulse-width modulation (PWM) is used to control the switches such that the input and output ripple currents are reduced such that the output capacitance can be reduced. The voltage doubler topology is adopted to double the output voltage in order to extend the useable energy of the capacitor when the line voltage is off. The circuit configuration, principle operation, system analysis, and a design example are discussed and presented in detail. Finally, experiments on a 500W prototype are provided to demonstrate the performance of the proposed converter.

Measurement of Radiative Heat Flux Using Plate Thermometer (판열유속계를 이용한 복사열유속 측정 실험)

  • Park, Won-Hee;Yoon, Kyung-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • Plate thermometers are used for measuring the radiative heat flux in high-temperature surroundings. The heat flux is calculated from the temperature measured at the back surface of the stainless steel surface of the meter. Heat fluxes from a Schmidt-Boelter gauge are measured as reference heat fluxes. A combined conductive coefficient is introduced to consider the heat loss to insulation, conduction through the stainless plate depth, and conduction from the non-uniform temperature of the plate of the plate thermometer. This coefficient is obtained using the repulsive particle swarm optimization.

Design of Adiabatic Demagnetization Refrigerator for Hydrogen Re-Liquefaction (수소 재액화용 단열 탈자 냉동기의 설계)

  • Park, Ji-Ho;Kim, Young-Kwon;Jeong, Sang-Kwon;Kim, Seok-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.53-59
    • /
    • 2012
  • Adiabatic demagnetization refrigerator (ADR) for hydrogen re-liquefaction operating between 24 K and 20 K has been designed. $Dy_{0.9}Gd_{0.1}Ni_2$, whose Curie temperature is 24 K, is selected as a magnetic refrigerant. The magnetic refrigerant powder is sintered with oxygen-free high purity copper (OFHC) powder to enhance its effective thermal conductivity as well as to achieve relatively high frequency. A perforated plate heat exchanger (PPHE) operated with forced convection is utilized as a heat switch. The forced convection heat switch is expected to have fast response relative to a conventional gas-gap heat switch. A conduction-cooled high Tc superconducting (HTS) magnet is employed to apply external magnetic field variation on a magnetic refrigerant. $2^{nd}$ generation GdBCO coated conductor HTS tape with Kapton$^{(R)}$ insulation (SUNAM Inc.) will be utilized for the HTS magnet. The magnetization and demagnetization processes are to be achieved by the AC operation of the HTS magnet. The designed magnetic field and target ramp rate of the HTS magnet are over 4 T with 180 A and 0.4 T/s, respectively. AC loss distribution on HTS magnet is theoretically estimated.