• Title/Summary/Keyword: Conducting polymer films

Search Result 77, Processing Time 0.03 seconds

$Orgacon^{TM}$ - The Organic alternative to ITO

  • Louwet, Frank
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.193-194
    • /
    • 2008
  • $Orgacon^{TM}$ products, based on the conducting polymer PEDOT/PSS, are very promising materials in cost-effective R2R production of large area electronics. This presentation will show both the progress in the surface resistance/VLT and progress in the stability (T/R.H. and light stability). A new generation of films, coating formulations and inks will be presented.

  • PDF

Functional Nannomaterials Based on Nanoporous Template

  • Kim, Jin-Gon;Yang, Seung-Yun;Byeon, Jin-Seok;Jeon, Geum-Hye;Jo, A-Ra
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.7.1-7.1
    • /
    • 2011
  • Nanoporous templates have been widely used for the development of new functional nanostructured materials suitable for electronics, optics, magnetism, and energy storage materials. We have prepared nanoporous templates by using thin films of mixtures of polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) and PMMA homopolymers. These templates have cylindrical nanoholes spanning the entire thickness of the film. Some applications of nanoporous templates are introduced: a) anti-reflective coating, b) the preparation of conducting polymer nanowires of poly (pyrrole), poly (3,4-ethylenedioxy-thiopene) onto a glass coated with indium-tin-oxide, and c) the separation membranes for biomaterials. We found that when the pore fraction of nanoholes in the film was ~0.68, almost zero reflectance at a specific wavelength, which can be changed with film thickness, was achieved at visible wavelengths Furthermore, ultra high density array of conducting nanowires was successfully prepared onto various substrates including flexible polymer. Due to highly alignment of polymer chain along the nanowire direction, the conductivity was much increased. Furthermore, these nanoporous films were found to be very effective for the separation of human Rhinovirus type 14 (HRV 14), major pathogen of a common cold in humans, from the buffer solution. We also found that when the pore size was effectively controlled down to 6 nm, a single file diffusion was observed.

  • PDF

Electrical Conductivity of Polypyrrole/Copolyester Composite Films. 1. Composite Films Prepared from $FeCl_3$/Copolyester Solution

  • Lee, Seong-Mo;Baik, Doo-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.49-52
    • /
    • 1998
  • Preparation of conducting Polymer composites by Polymerizing Polypyrrole in thermoplastic polymer matrices has been studied by many researchers in order to enhance the stability and the Physical Properties of polypyrrole. In the previous study4 we examined the effects of the ionic group content and the copolyester molecular structures on the electrical conductivity of conductivity of polypyrrole(PPy)/copolyester composite films. (omitted)

  • PDF

Femtosecond laser induced photo-expansion of organic thin films

  • Chae, Sang-Min;Lee, Myeong-Su;Choe, Ji-Yeon;Lee, Hyeon-Hwi;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.120.2-120.2
    • /
    • 2015
  • We propose a novel direct writing technique with a femtosecond laser enabling selective modification of not only the morphology of conducting polymer thin films but also the orientation and alignment of the polymer crystal. Surface relief gratings resulting from photoexpansion on P3HT:PCBM and PEDOT:PSS thin films were fabricated by femtosecond laser direct writing. The photoexpansion was induced at laser fluence below the ablation threshold of the thin film. The morphology (size and shape) of photoexpansion could be quantitatively controlled by laser writing parameters such as focused beam size, writing speed, and laser fluence. GIWAX results showed that face-on P3HT crystals were largely increased in the photoexpansion in comparison with pristine region of the thin film. In addition, the face-on P3HTs in the photoexpansion were aligned with their orientation along the polarization of the laser. The micro-RAMAN spectra confirmed that neither chemical composition change nor the polymer chain breaking was observable after femtosecond laser irradiation. We believe that this laser direct writing technique opens a new door to the fabrication of more efficient OPVs via non-contact, toxic-free approach.

  • PDF

Electrodeposition of Conducting Polymers on Copper in Nonaqueous Media by Corrosion Inhibition

  • Lee, Seonha;Lee, Hochun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This study demonstrates the direct anodic electrodeposition of polypyrrole (PPy), poly(3,4-ethyl-enedioxythiophene) (PEDOT), and polythiophene (PTh) on Cu electrodes by employing a corrosion inhibitor, succinonitrile (SN). SN was found to suppress anodic Cu dissolution beyond the oxidation potential of the polymer monomers. It is also revealed that the Cu surface passivated by SN is still adequately conductive to allow the redox reaction of 1,4-difluoro-2,5-dimethoxybenzene (FMB) and the oxidation of the polymer monomers. Through both cyclic voltammetry and galvanostatic techniques, PPy, PEDOT, and PTh films were successfully synthesized on Cu electrodes in the presence of SN, and the redox behaviors of the films were evaluated.

Poly(3,4-ethylenedioxythiophene) Electrodes Doped with Anionic Metalloporphyrins

  • 송의환;여인형;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1303-1308
    • /
    • 1999
  • Conducting poly(3,4-ethylenedioxythiophene) (PEDT) films with metalloporphyrins incorporated as the counter ions were prepared by electropolymerization of the monomer in the presence of metal-tetra(sulfonatophenyl) porphyrin anions. Cathodic reduction of oxygen on the resulting conducting polymer films was studied. The overpotential for O2 reduction on electrodes with cobalt-porphyrin complex was significantly smaller in acidic solutions than on gold. In basic solutions, the overpotential at low current densities was close to those on platinum and gold. Polymer electrode with Co-complex yielded higher limiting currents than with Fe-complex, although the Co-complex polymer electrode was a poorer electrocatalyst for O2 reduction in the activation range of potential than the Fe counterpart. From the rotating ring-disk electrode experiments, oxygen reduction was shown to proceed through either a 4-electron pathway or a 2-electron pathway. In contrast to the polypyr-role-based electrodes, the PEDT-based metalloporphyrin electrodes were stable with wider potential windows, including the oxygen reduction potential. Their electrocatalytic properties were maintained at temperatures up to 80℃ in KOH solutions.

Effect of Physicochemical Properties of Solvents on Microstructure of Conducting Polymer Film for Non-Volatile Polymer Memory

  • Paik, Un-Gyu;Lee, Sang-Kyu;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • The effect of physicochemical properties of solvents on the microstructure of polyvinyl carbazole (PVK) film for non-volatile polymer memory was investigated. For the solubilization of PVK molecules and the preparation of PVK films, four solvents with different physicochemical properties of the Hildebrand solubility parameter and vapor pressure were considered: chloroform, tetrahydrofuran (THF), 1,1,2,2-tetrachloroethane (TCE), and N,N-dimehtylformamide (DMF). The solubility of PVK molecules in the solvents was observed by ultravioletvisible spectroscopy. PVK molecules were observed to be more soluble in chloroform, with a low Hildebrand solubility parameter, than solvents with higher values. The aggregated size and micro-/nano-topographical properties of PVK films were characterized using optical and atomic force microscopes. The PVK film cast from chloroform exhibited enhanced surface roughness compared to that from TCE and DMF. It was also confirmed that the microstructure of PVK film has an effect on the performance of non-volatile polymer memory.

A study on the functional application of conducting polymer (도전성 고분자의 기능성 응용에 관한 연구)

  • 김종욱;김현철;정인성;김현관;구할본;김태성
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.520-526
    • /
    • 1994
  • A rectifying heterojunction consisting of polyparaphenylene(PPP) and polypyrrole(PPY) films was prepared by the electrochemical method. The photoresponse in the heterojunction of PPY and PPP is similar to the absorption spectrum of undoped PPP. This fact suggests that photoresponse depends strongly upon polyparaphenylene of semiconductor. The fill-factor was calculated from the photo current-voltage curve to be 0.19, which is relatively small compared to polyacetylene-polythiophene heterojunctions.

  • PDF

High-Performance Ionic Polymer-Metal Composite Actuators Based on Nafion/Conducting Nanoparticulate Electrospun Webs (나피온/전도성 나노입자 전기방사 웹을 이용한 고성능 이온성 고분자-금속 복합체 구동기의 제조)

  • Jung, Yo-Han;Lee, Jang-Woo;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • To improve the performance of ionic polymer-metal composite (IPMC) actuators, Nafion films sandwiched with Nafion/conducting nanoparticulate electrospun webs were used as polymer electrolytes of IPMC. Multiwalled carbon nanotube (MWNT) and silver were the conducting nanoparticulates and the nanoparticles dispersed in a Nafion solution were electrospun. IPMCs with the Nafion/conducting nanoparticulate electrospun webs displayed improved displacements, response rates, and blocking forces. MWNT was superior to silver in terms of displacement and blocking force, and the webs without the conducting fillers also caused enhanced performances compared with the conventional IPMCs. These improvements were attributed to an elevated electrolyte flux through highly porous interlayers and capacitance induced by well dispersed conducting fillers, and low interfacial resistance between electrolyte and electrodes.

Highly Conductive Flexible Transparent Electrode Using Silver Nanowires & Conducting Polymer

  • Seo, Dong-Min;Kim, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.547-547
    • /
    • 2012
  • As displays become larger and solar cells become cheaper, there is an increasing need for low-cost transparent electrodes. Intensive effort has been made to replace ITO (Indium Tin Oxide) based transparent electrode with cheap and flexible ones. Among those, silver nanowires have got limelight because of its great conductivity and flexibility. Even though the electric property of the Ag nanowire based transparent electrode surpassed ITO, the optical property needs to be improved (lower transmittance, higher haze). Here, we reported transparent electrode based on Ag nanowires and conducting polymer to improve optical properties. The Ag nanowires are coated onto PET films and the resulting transparent electrode film shows $200ohm/{\Box}$ resistance and > 90% optical transmittance.

  • PDF