• Title/Summary/Keyword: Conducting polymer film

Search Result 115, Processing Time 0.023 seconds

Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure (산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구)

  • Le, Sang-Yub;Kim, Ji-Hwan;Park, Dong-Hee;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

Characterization of Electro-Polymerized Polyaniline Film on the Cold Rolled Sheet in the Oxalic acid and Sodium Molybdate Electrolyte (옥살산과 몰리브덴산나트륨 전해액에서 냉연강판에 전해중합된 폴리아닐린 피막의 특성)

  • Lim, Ki-Young;Yoon, Jeong-Mo;Ki, Joon-Seo;Jang, Yong-Seok
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.386-393
    • /
    • 2006
  • Increasing environmental concerns require to solve the problem produced due to the use of heavy metals in coating formulations. Therefore, it is necessary to develop new coating strategy employing inherently conducting polymers such as polyaniline. Polyaniline is a conductive polymer that is synthesized by oxidation polymerization, and the electrochemical and chemical polymerization are possible for the oxidation of aniline. Electrochemical oxidation polymerization produces a fine surface and although voltage control is more convenient, it require electrolytic cells, and elaborate thin film can be acquired with the polymerization. Polyaniline films were electro-polymerized on cold rolled sheets using the galvanostat mode in the oxalic acidaniline-sodium molybdate electrolyte. The structure and properties of polyaniline film were studied using Potentiostat/Galvanostat 263A, FE-SEM,, AFM, SST, Colorimetry. A high corrosion resistance of polyaniline film was observed with an increase of corrosion potential by $500{\sim}600$ mV for the substrate covered with polyaniline.

Studies on the Sensing Mechanism of Conducting Polymer for Volatile Organic Compound Sensing (휘발성 유기화합물 측정을 위한 전도성고분자 센서의 감응기구에 관한 연구)

  • Hwang, Ha-Ryong;Baek, Ji-Heum;Heo, Jeung-Su;Lee, Deok-Dong;Im, Jeong-Ok;Lee, Jun-Yeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.599-602
    • /
    • 2001
  • In this study, we fabricated chemically polymerized PPy and PANi films with different selectivity by controlling dedoping time. And the sensing properties and mechanism of VOCs adsorption to conducting polymers were investigated. Thin sensor had higher sensitivity compared to thick one, and dedoped sensor for 1-minute highest sensitivity. Upon gas absorption, polypyrrole exhibited positive sensitivity while polyaniline had negative sensitivity. PPy film show hydrophilic property and PANi film show hydrophobic property. After the gas absorption, the sensitivity increased as a function of polarity of absorbed molecules. These behaviors are due to the polar molecules absorbed with the movable polaron or free carrier, and then it interrupt or generate the movement of polaron and carrier, and then it changes the conductivity of polymer. We found that conducting polymer sensors are very sensitive to the difference in polarity of gas molecules.

  • PDF

Charge/discharge Properties of PFPT-flyash Electrodes for Supercapacitor (Supercapacitor용 PFPT-flyash 전극의 충방전 특성)

  • Kim, Jong-Uk;Wee, Sung-Dong;Jeon, Yeon-Su;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.91-94
    • /
    • 2003
  • The purpose of this project is to research and development of thin film supercapacitor with conducting polymer composite electrodes and polymer electrolyte which have high energy density for thin film supercapacitor. We investigated cyclic voltammetry and charge/discharge cycling of PFPT-flyash electrodes. The first discharge capacity of PFPT-flyash electrode with 40wt.% flyash was 24F/g, while that of PFPT-VOflyash electrode with 40wt.% VOflyash was 32F/g. The capacitance of PFPT-VOflyash composite film with polymer electrolyte was 32 F/g at 1st and 20th cycle, respectively. The capacitance of PFPT-VOflyash/Li cell with 40 wt% VOflyash was 141 F/g at 8th cycle.

  • PDF

Electrochromism of Various Conducting Polymers with Enhanced Functionality (기능성을 향상시킨 다양한 전도성 고분자의 전기 변색 현상)

  • Ko Heung-Cho;Moon Bong-Jin;Lee Hoo-Sung
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.367-372
    • /
    • 2006
  • Electrochromic materials based on conducting polymers with pendant chromophores as well as their electrochromic properties are described. The conducting polymers described aye polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), poly (cyclopentadithiophene), and poly (1,4-bis [2- (3,4-ethylenedioxy) thienyl] benzene). The chromophores described are viologen and perylenetetra-carboxylic diimide. When the wavelength ranges of absorption of the conducting polymer and the chromophore aye not overlapping, multiple electrochromism was achieved. When the wavelength ranges are largely overlapping, higher contrast was achieved. An easy method for prediction of the film thickness for maximum contrast of a given electrochromic material is also described.

Electrical Capacitance of Polypyrrole-Perchlorate and Polypyrrole-Naflon Film Electrodes

  • 엄재웅;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.349-352
    • /
    • 1996
  • Electrical capacitance at the interface between electrolyte solution and conducting polypyrrole film electrode was measured by a simple electrochemical method. The polymer films were electropolymerized in the presence of perchlorate (PPy-ClO4) or Nafion (PPy-Nafion) anions as the dopant ions. Both polymers exhibited large double layer capacitances which were slightly potential dependent within the potential range where the polymers are conductive. The capacitance increased in proportion to the polymer thickness. The specific capacitance were about 10 Fg-1and 44 F g-1 for PPy-Nafion and PPy-ClO4, respectively.

Electrochromic Property of a Conductive Polymer Film Fabricated with Vapor Phase Polymerization (증기중합으로 제조된 전도성 고분자 박막의 전기 변색 특성)

  • Lee, Ji-Yea;Kim, Yu-Na;Kim, Eun-Kyoung
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • Poly(3,4-ethylenedioxythiophene) (PEDOT), which has the highest stability in conducting polymer was employed to electrochromic (EC) film and studied about electrochromic properties according to the film fabrication method. PEDOT films were coated by two different methods, electropolymerization (EP) and vapor phase polymerization (VPP). Both of PEDOT films showed dark blue color at dedoped neutral state. Spectroelectrochemistry, switching ability and stability of the devices were investigated by UV-Vis Spectrophotometer and Cyclic voltammetry. Surface morphologies of the PEDOT VPP film at oxidized and reduced state were obtained by AFM. The average surface roughness of the PEDOT-VPP film was 50 nm and more homogeneous than that of the PEDOT-EP. The EC property from the PEDOT-VPP film was improved compared to that of the PEDOT-EP film, to show a response time of 1.5 sec, transmittancechange of 49%, and coloration efficiency of 402.

Composite Materials with MWCNTs and Conducting Polymer Nanorods and their Application as Supercapacitors

  • Liua, Lichun;Yoo, Sang-Hoon;Park, Sung-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This study demonstrated the synthesis of high-surface-area metal-free carbonaceous electrodes (CE) from anodic aluminum oxide (AAO) templates, and their application as supercapacitors. Multi-walled Carbon nanotubes (MWCNTs) were interwoven into a porous network sheet that was attached to one side of AAO template through a vacuum filtration of the homogeneously dispersed MWCNT toluene solution. Subsequently, the conducting polymer was electrochemically grown into the porous MWCNT network and nanochannels of AAO, leading to the formation of a carbonaceous metal-free film electrode with a high surface area in the given geometrical surface area. Typical conducting polymers such as polypyrrole (PPY) and poly(3,4-ethylenedioxythiophene) (PEDOT) were examined as model systems, and the resulting electrodes were investigated as supercapacitors (SCs). These SCs exhibited stable, high capacitances, with values as high as 554 F/g, 1.08 F/$cm^2$ for PPY and 237 F/g, 0.98 F/$cm^2$ for PEDOT, that were normalized by both the mass and geometric area.

Enhanced Behaviors of Ionic-Polymer Metal Composite (IPMC) Actuator Coupled with Polymeric Anion-doped Polypyrrole Thin Film

  • Hong, Chan;Nam, Jae-Do;Tak, Yong-Sug
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.137-140
    • /
    • 2006
  • In order to overcome the weak actuation and relaxation problems during the deformation of IPMC actuator, polymeric anion (polystyrenesulfonate)-doped polypyrrole(Ppy(PSS)) was electrodeposited onto IPMC actuator. Electrochemical quartz crystal microbalance study showed that hydrated cations were instilled into Ppy(PSS) film and polymeric-anion dopants introduced during polymerization were not expelled. Ppy(PSS)-coated IPMC actuator formed two electrode/electrolyte interfaces, Pt/nafion and Ppy(PSS)/bulk solution, and additive volume expansion phenomena at interfaces induced the large deformation compensating the relaxation of actuation by back diffusion of water.

Simple Electrochemical Immunosensor for the Determination of Rabbit IgG Using Osmium Redox Polymer Films

  • Choi, Young-Bong;Lee, Seung-Hwa;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.229-232
    • /
    • 2007
  • An amperometric immunosensor for the determination of rabbit IgG is proposed. The immunoassay utilizes a screen-printed carbon electrode on which osmium redox polymer is electrodeposited. This immunoassay detects 0.1 ng/ml of rabbit IgG, which is ${\sim}10^2$ fold higher than the most sensitive enzyme amplified amperometric immunoassay. The assay utilizes a screen-printed carbon electrode which was pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a rabbit IgG. The rabbit IgG in the electron conducting film conjugates captures, when present, the anti-rabbit IgG. The captured anti-rabbit-IgG is labeled with horseradish peroxidase (HRP) which catalyzes the two-electron reduction of $H_2O_2$ to water. Because the redox hydrogel electrically connects HRP reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electro-catalytic for the reduction of $H_2O_2$ to $H_2O$ when the electrode is poised at 200 mV vs. Ag/AgCl.