• Title/Summary/Keyword: Conducting material

Search Result 774, Processing Time 0.031 seconds

Low-Temperature Performance of Solution-Based Transparent Conducting Oxides Depending on Nanorod Composite for Sn-Doped In2O3 Nanoinks (Sn-Doped In2O3 나노잉크를 위한 나노로드의 복합화에 따른 용액기반 투명 전도성 산화물의 저온성능)

  • Bae, Ju-Won;Koo, Bon-Ryul;Lee, Tae-Kun;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped $In_2O_3$) nanoinks with nanorods at an annealing temperature of $200^{\circ}C$. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (${\sim}102.3{\Omega}/square$) and optical transmittance (~80.2 %) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.

RF Gas Sensor Using 4-Port Hybrid Coupler with Conducting Polymer (전도성 고분자 물질이 결합된 하이브리드 커플러를 적용한 RF 가스 센서)

  • Lee, Yong-Joo;Kim, Byung-Hyun;Lee, Hee-Jo;Hong, Yunseog;Lee, Seung Hwan;Choi, Hyang Hee;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • In this paper, a gas sensor using a modified $90^{\circ}$ hybrid coupler structure with conducting polymer which operates at 2.4 GHz is represented. Conducting polymers are used to the gas sensing material in proposed sensors. The conducting polymer varies its electrical property, such as work function and conductivity corresponding to the certain gas. To verify this variation of electrical property of conducting polymer at microwave frequencies, the conducting polymer is incorporated with the $90^{\circ}$ hybrid coupler structure, and this proposed sensor operates as reflection type variable attenuator and variable phase shifter. The conducting polymer is employed as impedence-variable transmission lines that cause a impedance mismatching between the general transmission line and conducting polymer. The experiment was conducted with 100 ppm ethanol gas at temperature of $28^{\circ}C$ and relative humidity of 85 %. As a result, the amplitude deviation of $S_{21}$ is 0.13 dB and the frequency satisfying ${\angle}S_{21}=360^{\circ}$ is shifted about 2.875 MHz.

Volatile Organic Gas Recognition Using Conducting Polymer Sensor array (전도성 고분자 센서 어레이를 이용한 휘발성 유기 화합물 가스 인식)

  • Lee, Kyung-Mun;Joo, Byung-Su;Yu, Joon-Boo;Hwang, Ha-Ryong;Lee, Byung-Soo;Lee, Duk-Dong;Byun, Hyung-Gi;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.286-293
    • /
    • 2002
  • We fabricated gas recognition system using conducting polymer sensor array for recognizing and analyzing VOCs(Volatile Organic Compounds) gases. The polypyrrole and polyaniline thin film sensors which were made by chemical polymerization were employed to detect VOCs. The multi-dimensional sensor signals obtained from the sensor array were analyzed using PCA(principal component analysis) technique and RBF(radial basis function) Network. Throughout the experimental trails, we confirmed that RBF Network is effective than PCA technique in identifying VOCs.

Charge/discharge Properties of Flyash as a function of Electrolyte for Lithium Rechargeable Battery (전해질 종류에 따른 Flyash의 리튬 2차전지의 충방전 특성)

  • 송희웅;김종욱;이경섭;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.362-365
    • /
    • 1999
  • The electrochemical properties of flyash obtained from combustion of fuel in fossil power plants and their performance as anode material of secondary battery have been investigated Various flysh pellets molded at various molding pressure have been used as anode lithium secondary battery. The best Performance was achieved when flyash pellet molded at pressure of 400kgf/$\textrm{cm}^2$ is utilized, that is, charge capacity of 300kgf/$\textrm{cm}^2$ and Coulombic efficiency of larger than 95% have been achieved. In addition, this battery exhibited good cycling performance. Considering these results, we predicted that utilization of the flyash as anode material and polyaniline conducting polymer as cathode material in a secondary will show capacity of 300mAh/g and Coulombic efficiency of higher than 95%.

  • PDF

Design of the Radial Extrusion Process for the General-Purpose Flange Using Model Material (모델재료를 이용한 범용 플랜지의 레이디얼 압출 공정설계)

  • Lee, Sang-Don;Byon, Sung-Kwang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • This study is to compare and analyze the material flow, deformation characteristics, and forming load of flange by means of similitude experimental method of model material using plasticine. In order to find optimal forming conditions, prototype experiments were designed to investigate forming characteristics of general-purpose flange under various working conditions. As a result of prototype experiments, billet thickness and gap-height ratio was found to be the most influential experimental parameter in flange forming. Forming loads from prototype experiments were compared to the results of finite element analysis after conducting estimation of forming loads of real material. Results of prototype experiments based on model material techniques are expected to be used as a basic data of die design f3r the development of products and process.

Effect of Composite Conductor on Characteristics of Electric Double Layer Capacitor (전기이중층 커패시터의 특성에 미치는 혼성 도전재의 영향)

  • 김익준;이선영;문성인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • This work describes the effect of composite conductor on the characteristics of electric double layer capacitor. Test cell, which was fabricated with conducting composite consisted of 80% of SPB and 20% of VGCF, exhibits the better tate capability and the lower resistance than those of the cells fabricated with single electronic conductor. These enhanced properties could be related with the decrease of contact resistance between the activated carbon powders.

Reliability Enhancement of Anisotropic Conductive Adhesives Flip Chip on Organic Substrates by Non-Conducting Filler Additions

  • Paik, Kyung-Wook;Yim, Myung-Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.9-15
    • /
    • 2000
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt. %). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACAs composites with different content of non-conducting fillers, dynamic scanning calorimeter (DSC), and thermo-gravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and thermo-mechanical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in tile content of filler brought about the increase of Tg$^{DSC}$ and Tg$^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significant affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.ers.

  • PDF

Reliability Enhancement of Anisotropic Conductive Adhesives Flip Chip on Organic Substrates by Non-Conducting Filler Additions

  • Paik, Kyung-Wook;Yim, Myung-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.41-49
    • /
    • 2000
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACAs composites with different content of non-conducting fillers, dynamic scanning calorimeter (DSC), and thermo-gravimetric analyser (TGA), dynamic mechanical analyzer (DMA), and thermo-mechanical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in the content of filler brought about the increase of $Tg^{DSC}$ and $Tg^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.

  • PDF

Chimie Douce Reaction to Layered High-$T_c$ Superconducting / Super-ionic Conducting Heterostructures

  • Kim, Young-Il;Hwang, Seong-Ju;Yoo, Han-Ill;Choy, Jin-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.95-98
    • /
    • 1998
  • We have developed new type of superconducting-superionic conducting nanohybrids, $Ag_xI_wBi_2Sr_2Ca_{n-1}Cu_nO_y$ (n=1 and 2) by applying the chimie douce reaction to the superconducting Bi-based cuprates. These nanohybrids can be achieved by the stepwise intercalation whereby the $Ag^+$ ion is thermally diffused into the pre-intercalated iodine sublattice of $IBi_2Sr_2Ca_{n-1}Cu_nO_y$. According to the X-ray diffraction analysis, the Ag-I intercalates are found to have an unique heterostructure in which the superionic conducting Ag-I layer and the superconducting $IBi_2Sr_2Ca_{n-1}Cu_nO_y$ layer are regularly interstratified with a remarkable basal increment of ~7.3$\AA$. The systematic XAS studies demonstrate that the intercalation of Ag-I accompanies the charge transfer between host and guest, giving rise to a change in hole concentration of $CuO_2$ layer and to a slight $T_c$ change. The Ag K-edge EXAFS result reveals that the intercalated Ag-I has a $\beta$-AgI-like local structure with distorted tetrahedral symmetry, suggesting a mobile environment for the intercalated $Ag^+$ ion. In fact, from ac impedance analyses, we have found that the Ag-I intercalates possess a fast ionic conductivity ($\sigma_i=10^{-1.4}\sim 10^{-2.6}\Omega^{-1}\textrm{cm}^{-1}\;at\;270^{\circ}C$ with an uniform activation energy ($\DeltaE_a=0.22\pm 0.02$ eV). More interesting finding is that these intercalates exhibit high electronic conducting as well as ionic ones ($t_i$=0.02~0.60) due to their interstratified structure consisting of superionic conducting and superconducting layers. In this respect, these new intercalates are expected to be useful as an electrode material in various electrochemical devices.

  • PDF