• Title/Summary/Keyword: Conducting Polymer

Search Result 440, Processing Time 0.023 seconds

Preparation of Polycarbonate/Polyaniline Conducting Composite and Their Electrical Properties (Polycarbonate/Polyaniline 전도성 복합체의 제조 및 전기적 성질)

  • Lee, Wan-Jin;Kim, Yong-Ju
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.287-292
    • /
    • 1999
  • The conducting composites were prepared by solution blending of polyaniline (PANI) as a conducting polymer and polycarbonate (PC) as a matrix in chloroform. Also the composites film was prepared by solution casting method. The PANI was protonated with alkylbenzenesulfonic acids, such as camphorsulfonic acid (CSA) or dodecylbenzenesulfonic acid (DBSA). The electrical conductivity of composites prepared by solution casting was enhanced compared with that of compression molding. The electrical conductivity, tensile strength and morphology were observed as a function of the amount of protonating agent as well as PANI complex content. In general, as the PANI complex content was increased, the electrical conductivity increased. In the case of the composite film containing 25 wt % of PANI complex doped with DBSA, the electrical conductivity exhibited 3.18 S/cm.

  • PDF

A Study on the Preparation of Nylon6,6/Polypyrrole Conducting Composite (Nylon6,6/Polypyrrole 전도성 복합체의 제조에 관한 연구)

  • Lee, Wan-Jin;Kim, Hyo-Yong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.281-286
    • /
    • 1999
  • The conducting composites were prepared by blending polypyrrole (PPy) as a conducting polymer and nylon6,6 as a matrix. In chemical polymerization of PPy, the oxidizing agent was $FeCl_3$ and dopant was alkylbenzenesulfonic acid, such as camphorsulfonic acid (CSA) or dodecylbenzene sulfonic acid (DBSA). The electrical conductivity and mechanical properties were measured for the amount of dopant and PPy complex, and these morphology observed. When it was doped with DBSA having long alkyl chain and added the PPy complex of 25 wt %, the electrical conductivity was increased up to 0.64 S/cm.

  • PDF

A Study on the Preparation of NBR/Polypyrrole Conducting Composites and Their Electrical Properties (Poly(acrylonitrile-co-butadiene) Rubber/Polypyrrole 전도성 복합체의 제조와 전기적 성질에 관한 연구)

  • Jung, Mi-Ok;Huh, Yong-Il;Lee, Wan-Jin
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2000
  • The conducting composites were prepared by emulsion polymerization with poly (acrylonitrile-co-butadiene) (NBR) as a matrix and polypyrrole (PPY) as a conducting polymer. Among several surfactants, the electrical conductivity of the composite which was polymerized by dodecyl sodium sulfate (DSS) was the best. The film of composite was prepared by compression molding. The electrical conductivity was measured by 4 probes method as a function of PPY and temperature. When the content of PPY was 25 wt%, the electrical conductivity of composite was increased up to 1.17 S/cm. The percolation threshold showed at the vicinity of 15 wt% PPY content.

  • PDF

Electrical property of polyvinylalcohol (Polyvinylalcohol의 전기적 특성)

  • 김현철;구할본
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.184-189
    • /
    • 1995
  • The electrical property of ultra thin PVA films(several hundreds .angs.-several .mu.m in thickness) formed by sphere bulb blowing technique, has been studied. The electrical conductivity of relatively thick films(>several thousands .angs.) has been very high and enhanced by the exposure either to high humidity of air or $NH_3$, which can be explained in terms of the role of ionic transport. The use of PVA films as NH$_{3}$ sensor is also proposed. In ultra thin PVA films less than 1500.angs., two conducting states ; high conducting and low conducting states, are observed. The nonlinear current-voltage characteristics in the low conducting state and the switching between these two states are also confirmed. These properties are discussed in terms of electronic conduction processes. The breakdown strength of the ultra thin PVA film is found to be very high(-30MV/cm), supporting the electron avalanche process in a thick polymer films.

  • PDF

Conducting Polymers with Functional Dopants and their Applications in Energy, Environmental Technology, and Nanotechnology

  • Kim, Sung Yeol;Song, Hyun-Kon
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.12-21
    • /
    • 2015
  • Development of novel conducting polymers (CPs) is expected to facilitate the advancement of functional materials used for energy, environmental, and nanotechnology. Recent research efforts are focused on doping CPs with functional dopants to enhance their performance or add additional functions that are not inherent in CPs. This review surveys literatures about the doped CPs focusing on the roles of functional dopants, unlike other reviews focusing on the development of new conducting polymer backbones. The functional dopants presented in this review include redox active molecules, carbon nanomaterials, biopolymers, and chelating molecules. Depending on the dopants and their physicochemical properties, the doped CPs can be used for a variety of applications such as polymer batteries, membranes for waste water treatment, and chemical sensors. A major challenge of the CPs is presented and the ways to overcome the challenge is also suggested for the future development of stable, high performance CPs.

Influence of Polymer Morphology and Dispersibility on Mechanical Properties and Electrical Conductivity of Solution-cast PANI-DBSA/HIPS Blends (용액 캐스팅으로 제조한 PANI-DBSA/HIPS 블렌드에서 분산성 및 모폴로지가 기계적 특성과 전기전도도에 미치는 영향)

  • Lee, Jong-Hyeok;Choi, Sun-Woong;Kim, Eun-Ok
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.543-547
    • /
    • 2011
  • A study has been done to enhance the mechanical properties and processability of electrically conductive polyaniline(PANI) without the polymer's structural alternation. Functionalized acid doped PANI (PANI-DBSA) was prepared by an emulsion polymerization, and dodecylbenzenesulfonic acid (DBSA) played both roles of surfactant and dopant. Also, PANI-DBSA was solution cast blended with high impact polystyrene (HIPS) to produce PANI-DBSA/HIPS blend film. The structure and electrical properties of the conducting polymer blends were observed through UV-vis and FTIR/ATR spectroscopy. A study of the blend was carried by focusing on observation of mechanical and electrical properties based on dispersibility and changes in polymer morphology. The conductivity of the blends was increased by increasing the content of PANI-DBSA, and the sudden increase of conductivity to $3.5{\times}10^{-4}$ S/cm was observed even under a low content of 9 wt%. There was a strong association of continuous network formation with percolation and conductivity in the conducting polymer blends.