• Title/Summary/Keyword: Conducting Filament

Search Result 13, Processing Time 0.036 seconds

Electrostatic Charging and Substrate Seeding in Gas Phase Synthesis of Nanocrystalline Diamond Powder

  • Cho, Jung-Min;Lee, Hak-Joo;Choi, Heon-Jin;Lee, Wook-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.418-418
    • /
    • 2012
  • Synthesis of nanocrystalline diamond powder was investigated via a gas-to-particle scheme using the hot filament chemical vapor deposition. Effect of substrate surface seeding by nano diamond powder, and that of the electrical conductance of the substrate were studied. The substrate temperature, methane content in the precursor gas, filament-substrate distance and filament temperature were $670^{\circ}C$, 5% methane in hydrogen, 10 mm and $2400^{\circ}C$, respectively. The powder formation by gas-to-particle mechanism were greatly enhanced by the substrate seeding by the nano diamond powder. It was attributed to the removal of the electrostatic force between the substrate and the seeded nano diamond particle by the thermal electron shower from the hot filament, via the depolarization of the substrate surface or the attached diamond powder and subsequent levitation into the gas phase to serve as the gas-phase nucleation site. The powder formation was greatly favoured by the conducting substrate relative to the insulating substrate, which proved the actual effect of the electric static force in the powder formation.

  • PDF

Large-area imaging evolution of micro-scale configuration of conducting filaments in resistive switching materials using a light-emitting diode

  • Lee, Keundong;Tchoe, Youngbin;Yoon, Hosang;Baek, Hyeonjun;Chung, Kunook;Lee, Sangik;Yoon, Chansoo;Park, Bae Ho;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.285-285
    • /
    • 2016
  • Resistive random access memory devices have been widely studied due to their high performance characteristics, such as high scalability, fast switching, and low power consumption. However, fluctuation in operational parameters remains a critical weakness that leads to device failures. Although the random formation and rupture of conducting filaments (CFs) in an oxide matrix during resistive switching processes have been proposed as the origin of such fluctuations, direct observations of the formation and rupture of CFs at the device scale during resistive switching processes have been limited by the lack of real-time large-area imaging methods. Here, a novel imaging method is proposed for monitoring CF formation and rupture across the whole area of a memory cell during resistive switching. A hybrid structure consisting of a resistive random access memory and a light-emitting diode enables real-time monitoring of CF configuration during various resistive switching processes including forming, semi-forming, stable/unstable set/reset switching, and repetitive set switching over 50 cycles.

  • PDF

Improvement of Reliability by Using Fluorine Doped Tin Oxide Electrode for Ta2O5 Based Transparent Resistive Switching Memory Devices

  • Lee, Do Yeon;Baek, Soo Jung;Ryu, Sung Yeon;Choi, Byung Joon
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Purpose: Fluorine doped tin oxide (FTO) bottom electrode for $Ta_2O_5$ based RRAM was studied to apply for transparent resistive switching memory devices owing to its superior transparency, good conductivity and chemical stability. Methods: $ITO/Ta_2O_5/FTO$ (ITF) and $ITO/Ta_2O_5/Pt$ (ITP) devices were fabricated on glass and Si substrate, respectively. UV-visible (UV-VIS) spectroscopy was used to examine transparency of the ITF device and its band gap energy was determined by conventional Tauc plot. Electrical properties, such as electroforming and voltage-induced RS characteristics were measured and compared. Results: The device with an FTO bottom electrode showed good transparency (>80%), low forming voltage (~-2.5V), and reliable bipolar RS behavior. Whereas, the one with Pt electrode showed both bipolar and unipolar RS behaviors unstably with large forming voltage (~-6.5V). Conclusion: Transparent and conducting FTO can successfully realize a transparent RRAM device. It is concluded that FTO electrode may form a stable interface with $Ta_2O_5$ switching layer and plays as oxygen ion reservoir to supply oxygen vacancies, which eventually facilitates a stable operation of RRAM device.

Development of Reliability Design Technology about Electrochemical Migration by Metal of Electronic Components (전자부품의 금속소재에 따른 Electrochemical Migration에 대한 신뢰성 설계기술개발)

  • Lee, Shin-Bok;Jung, Ja-Young;Park, Young-Bae;Joo, Young-Chang
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1724-1729
    • /
    • 2007
  • Smaller size and higher integration of electronic systems make narrower interconnect pitch not only in chip-level but also in package-level. Moreover electronic systems are required to operate in harsher conditions, that is, higher current / voltage, elevated temperature/humidity, and complex chemical contaminants. Under these severe circumstances, electronic components respond to applied voltages by electrochemically ionization of metals and conducting filament forms between anode and cathode across a nonmetallic medium. This phenomenon is called as the Electrochemical migration

  • PDF

Effect of Applied Voltage Bias on Electrochemical Migration in Eutectic SnPb Solder Alloy

  • Lee, Shin-Bok;Jung, Ja-Young;Yoo, Young-Ran;Park, Young-Bae;Kim, Young-Sik;Joo, Young-Chang
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.282-285
    • /
    • 2007
  • Smaller size and higher integration of electronic systems make narrower interconnect pitch not only in chip-level but also in package-level. Moreover electronic systems are required to operate in harsher conditions, that is, higher current / voltage, elevated temperature / humidity, and complex chemical contaminants. Under these severe circumstances, electronic components respond to applied voltages by electrochemically ionization of metals and conducting filament forms between anode and cathode across a nonmetallic medium. This phenomenon is called as the electrochemical migration. Many kinds of metal (Cu, Ag, SnPb, Sn etc) using in electronic packages are failed by ECM. Eutectic SnPb which is used in various electronic packaging structures, that is, printed circuit boards, plastic-encapsulated packages, organic display panels, and tape chip carriers, chip-on-films etc. And the material for soldering (eutectic SnPb) using in electronic package easily makes insulation failure by ECM. In real PCB system, not only metals but also many chemical species are included. And these chemical species act as resources of contamination. Model test systems were developed to characterize the migration phenomena without contamination effect. The serpentine-shape pattern was developed for analyzing relationship of applied voltage bias and failure lifetime by the temperature / humidity biased(THB) test.

Acceleration Test of Ion Migration in FR-4 PCB Plated with Sn (Sn 표면처리된 FR-4 재질 PCB에서의 이온마이그레이션 가속시험)

  • Hwang, Soon-Mi;Jung, Young-Baek;Kim, Chul-Hee;Lee, Kwan-Hun
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.153-163
    • /
    • 2012
  • Recently, as a electronic components are becoming more high-density, so that electronic circuits have smaller pitches between the leads and are more vulnerable to insulation failure. And the reliability of electric insulation has become an ever important issue as device contact pitches and print patterns shrink. Ion migration occurs in highly humid environment as voltage is applied to an installed print circuit. Under highly humid and voltage applied circumstances, electronic components respond to applied voltages by electrochemical ionization of metals, and a conducting filament forms between the anode and cathode across a nonmetallic medium. This leads to short-circuit failure of the electronic component. In thesis, we study acceleration test of ion migration in FR-4 PCB plated with Sn. Voltage applied test of FR-4 PCB circuits plated with Sn was tested in the temperature and humidity environments. As a result of this test, equation of acceleration model was derived.

Filament, the Universal Nersery of Stars: Progress Report on TRAO Survery of Nearby Filamentary Filamentary Molecular Clouds

  • Kim, ShinYoung;Chung, Eun Jung;Lee, Chang Won;Myers, Philip C.;Caselli, Paola;Tafalla, Mario;Kim, Gwanjeong;Kim, Miryang;Soam, Archana;Gophinathan, Maheswar;Liu, Tie;Kim, Kyounghee;Kwon, Woojin;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2017
  • To dynamically and chemically understand how filaments, dense cores, and stars form under different environments, we are conducting a systematic mapping survey of nearby molecular clouds using the TRAO 14 m telescope with high ($N_2H^+$ 1-0, $HCO^+$ 1-0, SO 32-21, and $NH_2D$ v=1-0) and low ($^{13}CO$ 1-0, $C^{18}O$ 1-0) density tracers. The goals of this survey are to obtain the velocity distribution of low dense filaments and their dense cores for the study of their origin of the formation, to understand whether the dense cores form from any radial accretion or inward motions toward dense cores from their surrounding filaments, and to study the chemical differentiation of the filaments and the dense cores. Until the 2017A season, the real OTF observation time is ~760 hours. We have almost completed mapping observation with four molecular lines ($^{13}CO$ 1-0, $C^{18}O$ 1-0, $N_2H^+$ 1-0, and $HCO^+$ 1-0) on the six regions of molecular clouds (L1251 of Cepheus, Perseus West, Polaris South, BISTRO region of Serpens, California, and Orion B). The cube data for $^3CO$ and $C^{18}O$ lines were obtained for a total of 6 targets, 57 tiles, 676 maps, and $7.1deg^2$. And $N_2H^+$ and $HCO^+$ data were added for $2.2deg^2$ of dense regions. All OTF data were regridded to a cell size of 44 by 44 arcseconds. The $^{13}CO$ and $C^{18}O$ data show the RMS noise level of about (0.1-0.2) K and $N_2H^+$ and $HCO^+$ data show about (0.07-0.2) K at the velocity resolution of 0.06 km/s. Additional observations will be made on some regions that have not reached the noise level for analysis. To identify filaments, we are using and testing programs (DisPerSE, Dendrogram, FIVE) and visual inspection for 3D image of cube data. A basic analysis of the physical and chemical properties of each filament is underway.

  • PDF

Electrical Switching Characteristics of Ge-Se Thin Films for ReRAM Cell Applications

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.343-344
    • /
    • 2012
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states. [1-3] We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF

Main Factors that Effect on the Ion-Migration of PCB (PCB의 이온-마이그레이션에 영향을 미치는 주요요인)

  • Jang, In-Hyeok;Kim, Jeong-Ho;Oh, Gil-Gu;Lee, Young-Joo;Lim, Hong-Woo;Choi, Youn-Ok
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Purpose: The purpose of this study is main factors (environmental conditions, pattern spacing, pattern material) that effect the ion-migration of PCB. Methods: Recently, the electronic components are becoming more high density of electronic device, so that electronic circuits have smaller pitches between the patten and more vulnerable to insulation failure. so the reliability of electric insulation of device has become an ever important issue as device contact pitches of pattern. Usually, ion-migration occurs in high temperature and high humidity environment as voltage is applied to the circuit. Under high temperature and high humidity, voltage applied electronic components respond to applied voltages by metals's electrochemical ionization and a conducting filament forms between the anode and cathode across a nonmetallic medium. This leads to short-circuit failure of the electronic component. Results: we studied ion-migration that occurs in accordance with the main factors (environmental conditions, pitches, pattern material). The PCB pattern material was made by two different types of material (free solder, OSP) for this research and pitches of pattern is 0.15mm, 0.3mm, 0.5mm. PCB was experimented in the environmental conditions (high temperature $120^{\circ}C$, high temperature and high humidity $85^{\circ}C$, 85%RH) and was analyzed for ion-migration through the experiment results. Conclusion: We confirmed that environmental condition, pitches of pattern, pattern material had effect on ion-migration of PCB.

Resistive Memory Switching in Ge5Se5 Thin Films

  • Kim, Jang-Han;Hwang, Yeong-Hyeon;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.326-326
    • /
    • 2014
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states [1-3]. We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF