• Title/Summary/Keyword: Conducted emission

Search Result 1,236, Processing Time 0.027 seconds

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

A Study on the Dynamic Correlation between the Korean ETS Market, Energy Market and Stock Market (한국 ETS시장, 에너지시장 및 주식시장 간의 동태적 상관관계에 관한 연구)

  • Guo-Dong Yang;Yin-Hua Li
    • Korea Trade Review
    • /
    • v.48 no.4
    • /
    • pp.189-208
    • /
    • 2023
  • This paper analyzed the dynamic conditional correlation between the Korean ETS market, energy market and stock market. This paper conducted an empirical analysis using daily data of Korea's carbon credit trading price, WTI crude oil futures price, and KOSPI index from February 2, 2015 to December 30, 2021. First, the volatility of the three markets was analyzed using the GARCH model, and then the dynamic conditional correlations between the three markets were studied using the bivariate DCC-GARCH model. The research results are as follows. First, it was found that the Korean ETS market has a higher rate of return and higher investment risk than the stock market. Second, the yield volatility of the Korean ETS market was found to be most affected by external shocks and least affected by the volatility information of the market itself. Third, the correlation between the Korean ETS market and the stock market was stronger than that of the WTI crude oil futures market. This paper analyzed the correlation between the Korean ETS market, energy market, and stock market and confirmed that the level of financialization in the Korean ETS market is quite low.

Comparative Analysis of the Physical and Biochemical Properties of Light-cure Resin-modified Pulp Capping Materials

  • Tae Gyeom Kim;Jongsoo Kim;Joonhaeng Lee;Jisun Shin;Mi Ran Han;Jongbin Kim;Yujin Kim;Jae Hee Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.149-164
    • /
    • 2024
  • This study compared the solubility, water absorption, dimensional stability, release of various ions (hydroxyl, calcium, sulfur, strontium, and silicon), and cytotoxicity of light-cured resin-modified pulp-capping materials. Resin-modified calcium hydroxide (Ultra-blendTM plus, UBP), light-cured resin-modified calcium silicate (TheraCal LCTM, TLC), and dual-cure resin-modified calcium silicate (TheraCal PTTM, TPT) were used. Each material was polymerized; solubility, 24-hour water absorption, and 30- day dimensional stability experiments were conducted to test its physical properties. Solubility was assessed according to the ISO 6876 standard, and 24 hours of water absorption, 30 days of dimensional stability were assessed by referring to the previous protocol respectively. Eluates at 3 and 24 hours and on 7, 14, and 28 days were analyzed according to the ISO 10993-12 standard. And the pH, Ion-releasing ability, cell proliferation rate, and cell viability were assessed using the eluates to evaluate biochemical characteristics. pH was measured with a pH meter and Ion-releasing ability was assessed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Cell proliferation rate and cell viability were assessed using human dental pulp cells (hDPCs). The former was assessed by an absorbance assay using the CCK-8 solution, and the latter was assessed by Live and Dead staining. TPT exhibited lower solubility and water absorption than TLC. UBP and TPT demonstrated higher stability than TLC. The release of sulfur, strontium, calcium, and hydroxyl ions was higher for TLC and TPT than for UBP. The 28-day release of hydroxyl and silicon ions was similar for TLC and TPT. TLC alone exhibited a lower cell proliferation rate compared to the control group at a dilution ratio of 1 : 2 in cell proliferation and dead cells from Live and Dead assay evaluation. Thus, when using light-cure resin-modified pulp-capping materials, calcium silicate-based materials can be considered alternatives to calcium hydroxide-based materials. Moreover, when comparing physical and biochemical properties, TPT could be prioritized over TLC as the first choice.

A Study on Health Impact Assessment and Emissions Reduction System Using AERMOD (AERMOD를 활용한 건강위해성평가 및 배출저감제도에 관한 연구)

  • Seong-Su Park;Duk-Han Kim;Hong-Kwan Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Purpose: This study aims to quantitatively determine the impact on nearby risidents by selecting the amount of chemicals emitted from the workplace among the substances subject to the chemical emission plan and predicting the concentration with the atmospheric diffusion program. Method: The selection of research materials considered half-life, toxicity, and the presence or absence of available monitoring station data. The areas discharged from the materials to be studied were selected as the areas to be studied, and four areas with floating populations were selected to evaluate health risks. Result: AERMOD was executed after conducting terrain and meteorological processing to obtain predicted concentrations. The health hazard assessment results indicated that only dichloromethane exceeded the threshold for children, while tetrachloroethylene and chloroform appeared at levels that cannot be ignored for both children and adults. Conclusion: Currently, in the domestic context, health hazard assessments are conducted based on the regulations outlined in the "Environmental Health Act" where if the hazard index exceeds a certain threshold, it is considered to pose a health risk. The anticipated expansion of the list of substances subject to the chemical discharge plan to 415 types by 2030 suggests the need for efficient management within workplaces. In instances where the hazard index surpasses the threshold in health hazard assessments, it is judged that effective chemical management can be achieved by prioritizing based on considerations of background concentration and predicted concentration through atmospheric dispersion modeling.

Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC (NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석)

  • Inhye Kim;Jeongjae Oh;Taesung Kim;Minsuk Im;Sunghyun Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.225-232
    • /
    • 2024
  • The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas, ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2 emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of various fuel mixtures and economic analysis in co-firing power generation.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Comparative Study on the Carbon Stock Changes Measurement Methodologies of Perennial Woody Crops-focusing on Overseas Cases (다년생 목본작물의 탄소축적 변화량 산정방법론 비교 연구-해외사례를 중심으로)

  • Hae-In Lee;Yong-Ju Lee;Kyeong-Hak Lee;Chang-Bae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.258-266
    • /
    • 2023
  • This study analyzed methodologies for estimating carbon stocks of perennial woody crops and the research cases in overseas countries. As a result, we found that Australia, Bulgaria, Canada, and Japan are using the stock-difference method, while Austria, Denmark, and Germany are estimating the change in the carbon stock based on the gain-loss method. In some overseas countries, the researches were conducted on estimating the carbon stock change using image data as tier 3 phase beyond the research developing country-specific factors as tier 2 phase. In South Korea, convergence studies as the third stage were conducted in forestry field, but advanced research in the agricultural field is at the beginning stage. Based on these results, we suggest directions for the following four future researches: 1) securing national-specific factors related to emissions and removals in the agricultural field through the development of allometric equation and carbon conversion factors for perennial woody crops to improve the completeness of emission and removals statistics, 2) implementing policy studies on the cultivation area calculation refinement with fruit tree-biomass-based maturity, 3) developing a more advanced estimation technique for perennial woody crops in the agricultural sector using allometric equation and remote sensing techniques based on the agricultural and forestry satellite scheduled to be launched in 2025, and to establish a matrix and monitoring system for perennial woody crop cultivation areas in the agricultural sector, Lastly, 4) estimating soil carbon stocks change, which is currently estimated by treating all agricultural areas as one, by sub-land classification to implement a dynamic carbon cycle model. This study suggests a detailed guideline and advanced methods of carbon stock change calculation for perennial woody crops, which supports 2050 Carbon Neutral Strategy of Ministry of Agriculture, Food, and Rural Affairs and activate related research in agricultural sector.

Consideration on Shielding Effect Based on Apron Wearing During Low-dose I-131 Administration (저용량 I-131 투여시 Apron 착용여부에 따른 차폐효과에 대한 고찰)

  • Kim, Ilsu;Kim, Hosin;Ryu, Hyeonggi;Kang, Yeongjik;Park, Suyoung;Kim, Seungchan;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • Purpose In nuclear medicine examination, $^{131}I$ is widely used in nuclear medicine examination such as diagnosis, treatment, and others of thyroid cancer and other diseases. $^{131}I$ conducts examination and treatment through emission of ${\gamma}$ ray and ${\beta}^-$ ray. Since $^{131}I$ (364 keV) contains more energy compared to $^{99m}Tc$ (140 keV) although it displays high integrated rate and enables quick discharge through kidney, the objective of this study lies in comparing the difference in exposure dose of $^{131}I$ before and after wearing apron when handling $^{131}I$ with focus on 3 elements of external exposure protection that are distance, time, and shield in order to reduce the exposure to technicians in comparison with $^{99m}Tc$ during the handling and administration process. When wearing apron (in general, Pb 0.5 mm), $^{99m}Tc$ presents shield of over 90% but shielding effect of $^{131}I$ is relatively low as it is of high energy and there may be even more exposure due to influence of scattered ray (secondary) and bremsstrahlung in case of high dose. However, there is no special report or guideline for low dose (74 MBq) high energy thus quantitative analysis on exposure dose of technicians will be conducted based on apron wearing during the handling of $^{131}I$. Materials and Methods With patients who visited Department of Nuclear Medicine of our hospital for low dose $^{131}I$ administration for thyroid cancer and diagnosis for 7 months from Jun 2014 to Dec 2014 as its subject, total 6 pieces of TLD was attached to interior and exterior of apron placed on thyroid, chest, and testicle from preparation to administration. Then, radiation exposure dose from $^{131}I$ examination to administration was measured. Total procedure time was set as within 5 min per person including 3 min of explanation, 1 min of distribution, and 1 min of administration. In regards to TLD location selection, chest at which exposure dose is generally measured and thyroid and testicle with high sensitivity were selected. For preparation, 74 MBq of $^{131}I$ shall be distributed with the use of $2m{\ell}$ syringe and then it shall be distributed after making it into dose of $2m{\ell}$ though dilution with normal saline. When distributing $^{131}I$ and administering it to the patient, $100m{\ell}$ of water shall be put into a cup, distributed $^{131}I$ shall be diluted, and then oral administration to patients shall be conducted with the distance of 1m from the patient. The process of withdrawing $2m{\ell}$ syringe and cup used for oral administration was conducted while wearing apron and TLD. Apron and TLD were stored at storage room without influence of radiation exposure and the exposure dose was measured with request to Seoul Radiology Services. Results With the result of monthly accumulated exposure dose of TLD worn inside and outside of apron placed on thyroid, chest, and testicle during low dose $^{131}I$ examination during the research period divided by number of people, statistics processing was conducted with Wilcoxon Signed Rank Test using SPSS Version. 12.0K. As a result, it was revealed that there was no significant difference since all of thyroid (p = 0.345), chest (p = 0.686), and testicle (p = 0.715) were presented to be p > 0.05. Also, when converting the change in total exposure dose during research period into percentage, it was revealed to be -23.5%, -8.3%, and 19.0% for thyroid, chest, and testicle respectively. Conclusion As a result of conducting Wilcoxon Signed Rank Test, it was revealed that there is no statistically significant difference (p > 0.05). Also, in case of calculating shielding rate with accumulate exposure dose during 7 months, it was revealed that there is irregular change in exposure dose for inside and outside of apron. Although the degree of change seems to be high when it is expressed in percentage, it cannot be considered a big change since the unit of accumulated exposure dose is in decimal points. Therefore, regardless of wearing apron during high energy low dose $^{131}I$ administration, placing certain distance and terminating the administration as soon as possible would be of great assistance in reducing the exposure dose. Although this study restricted $^{131}I$ administration time to be within 5 min per person and distance for oral administration to be 1m, there was a shortcoming to acquire accurate result as there was insufficient number of N for statistics and it could be processed only through non-parametric method. Also, exposure dose per person during lose dose $^{131}I$ administration was measured with accumulated exposure dose using TLD rather than through direct-reading exposure dose thus more accurate result could be acquired when measurement is conducted using electronic dosimeter and pocket dosimeter.

  • PDF

Evaluation of Reasonable $^{18}F$-FDG Injected Dose for Maintaining the Image Quality in 3D WB PET/CT (PET/CT 검사에서 영상의 질을 유지하기 위한 적정한 $^{18}F$-FDG 투여량의 평가)

  • Moon, A-Reum;Lee, Hyuk;Kwak, In-Suk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2011
  • Purpose: $^{18}F$-FDG injected dose to the patient is quite different between the recommended dose from manufacturer and the actual dose applied to each of hospitals. injection of inappropriate $^{18}F$-FDG dose may not only increase the exposed dose to patients but also reduce the image quality. we thus evaluated the proper $^{18}F$-FDG injected dose to decrease the exposed dose to patients considering the image quality. Materials And Methods: NEMA Nu2-1994 phantom was filled with $^{18}F$-FDG increasing hot cylinder radioactivity concentration to 1, 3, 5, 7, 9 MBq/kg based on the ratio of 4:1 between the hot cylinder and background activity. after completing the transmission scan using ct, emission scan was acquired in 3D mode for 2 minutes 30 seconds/bed. ROI was set up on hot cylinder and background radioactivity region. after measuring $SUV_{max}$ those regions, then analyzed SNR at the points. clinical experiment has been conducted the object of patients who have came to smc from november 2009 to august 2010, 97 patients without having a hepatic lesions were selected. ROI was set up in the liver and thigh area. after measuring $SUV_{max}$, the image quality was compared following the injected dose. Results: in phantom study, as the injected radioactivity concentration per unit mass was 1, 3, 5, 7, 9 MBq/kg, $SUV_{max}$ was 23.1, 24.1, 24.3, 22.8, 23.6 and SNR was shown 0.48, 0.54, 0.56, 0.55, 0.55. according to increment of the injected dose, $SUV_{max}$ and SNR was increased under 5 MBq/kg but they were decreased over 7 MBq/kg. in case of clinical experiment, as increased the injected radioactivity concentration per unit mass was 4.72, 5.34, 6.16, 7.41, 8.68 MBq/kg, $SUV_{max}$ was 2.68, 2.67, 2.26, 1.88, 1.95 and SNR was shown 0.52, 0.53, 0.46, 0.46, 0.44. if the injected dose exceeds 5 MBq/kg, showed a decrease pattern as phantom study. Conclusion: increasing $^{18}F$-FDG injected dose considered patient's body weight improve image quality within a certain range. if it exceeds the range, it can be reduced image quality due to random and scatter coincidences. this study indicates that the optimal injected dose was 5 MBq/kg per unit mass the injected radioactivity concentration in 3d wb pet/ct.

  • PDF

Influence of N Fertilization Level, Rainfall, and Temperature on the Emission of N2O in the Jeju Black Volcanic Ash Soil with Carrot Cultivation (당근 재배 화산회토양에서 질소시비 수준 및 강우, 온도 환경 변화에 따른 N2O 배출 특성)

  • Yang, Sang-Ho;Kang, Ho-Jun;Lee, Shin-Chan;Oh, Han-Jun;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.459-465
    • /
    • 2012
  • This study was conducted to obtain investigated characteristic factors which has an influence on nitrous oxide ($N_2O$) emissions related to the environment change of nitrogen application level, rainfall and temperature. It was done by the carrot cultivation at black volcanic ashes soil in the experimental field of Jeju Special Self-governing Province Agricultural Research and Extension Services from 2010 to 2011. During the carrot cultivation period, the more amount of nitrogen fertilizer applied, the more amount of $N_2O$ emissions were released. Generally $N_2O$ emissions were so deeply released to climate as that in the first and middle of cultivation with heavy rainfall released amount is high, otherwise it was released very low at the end of cultivation and drought season. $N_2O$ emissions type was considered to relate with the rainfall pattern and soil water content. We obtained the result correlated with $N_2O$ emissions, in 2010, as the soil water and soil temperature were significant to $0.5718^{**}$ ($r$) and $0.4908^{**}$ ($r$) respectively, but soil EC was not significant to 0.2704 ($r$). In 2011, soil water was significant to $0.3394^*$ ($r$), but soil temperature and soil EC were not significant to 0.2138 ($r$) and 0.2462 ($r$) respectively. Also, $NO_3$-N and soil nitrogen ($NO_3-N+NH_4-N$) were not significant to 0.0575 ($r$) and 0.0787 ($r$) respectively. During the carrot cultivation period, the average emissions factor released by the nitrogen fertilizer application for 2 years was presumed to be 0.0025 $N_2O$-N kg / N kg. This factor was 4 times than the IPCC (0.0100 $N_2O$-N kg / N kg) factor.