• Title/Summary/Keyword: Conditioned Medium

Search Result 174, Processing Time 0.026 seconds

Effect of Conditioned Medium of Human Endothelial Cell Line(tHUE-2 cell) on In Vitro Development of Mouse 1-cell Embryos In Vitro Fertilized (체내 수정된 Mouse 1-세포배의 체외발생에 미치는 혈관내피세포주(tHUE-2세포) 배양액의 영향)

  • ;;;Y. Mitsui
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 1995
  • Culture medium (ASF-301) of tHUE-2 cell, human endothelial cell line, and culture medium of these cells (conditioned medium : CM) which affect embryonic development of in vivo fertilized 1-cell embryos of mouse were examined. Two-cell stage block of mouse embryos was overicomed in ASF-301 and CM without EDTA, which usually added in basic medium (modified Whitten Medium: MWM, control) to overcome the 2-cell stage block. The developmental rates of embryos to the blastocyst stage were significantly increased in MWM containing 12.5% of growth factors added to ASF-301 (10mg/ $\ell$ transferrin, 1mg/$\ell$ insulin, 0.01mg/$\ell$ EGF) than those of 100% addition and control, 78.0% vs 20.8 and 52.3%, respectively (P<0.05), but the growth factors was not affected the hatching rate of blastocyst. Using ASF-301 or CM which was not treated, embryonic development into the blastocyst and hatched blastocyst stages were not affected. However, proportions of embryonic development into the blastocyst and hatched blastocyst stages were significantly higher in dilution (ASF-301 1:10; CM 1:3~1:6) than those in control (P,0.05). In ASF-301 dialyzed M.W.<10000 dialysis membrane, the developmental rate upto the hatched blastocyst stage was significantly increased, compared to ASF-301 which was not dialyzed (P<0.05), and hatching rate of blastocyst of these group was singnificantly increased than those in MWM (P<0.05). Compared to CM which was not dialyzed, however, in dialyzed CM was significantly decreased, compared to untreated CM (P<0.05), especially any hatched blastocyst was not appeared. As a result of these experiments indicated that a kind or porper treatment such as a dilution of complex synthetic cell culture medium and conditioned medium, and that a optimal concentration of growth factors are usuful for embryo cultrue in vitro.

  • PDF

A Study of the Effect of Platelet-Rich Plasma on the Cellular Proliferation and Differentiation of Osteoblast Cell Line (혈소판농축혈장이 조골세포주의 세포증식 및 분화에 미치는 영향에 대한 연구)

  • Jung, Tae-Wook;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.31-41
    • /
    • 2004
  • The osseointegration in implant therapy is achieved following general wound healing mechanism. Platelet play a major role in wound healing process. In addition to blood clot formation, they secrete many growth factors which regulate the attachment, proliferation and differentiation of nearly all cell types. The use of these growth factors is now known to be very effective methods to improve the cellular activity. Platelet-rich plasma which is made with the newly developed technique concentrating platelets 3-folds or more is also proven to be very effective method to stimulate and accelerate the healing of bone and soft tissue. Previous study proved that platelet-rich plasma enhanced the cellular attachment by inducing fibronectin, vitronectin from osteoblast. So, this study was aimed to investigate the effect of platelet-rich plasma on the cellular proliferation and differentiation in vitro. The effect on the proliferation was evaluated by MTT assay. To evaluate autocrine and paracrine effect, conditioned medium was made and compared. By measuring alkaline phosphatase activity, the effect on the cellular differentiation was evaluated. The results were as following: The cellular proliferation of osteoblast cell line increased depending on the concentration of platelet-rich plasma and conditioned medium. The alkaline phosphatase activity increased depending on the concentration of platelet-rich plasma and conditioned medium. These findings imply that platelet-rich plasma enhance the cellular proliferation and differentiation and maximize the cellular activity by using the autocrine and paracrine effect.

Effects of Mixing Performance and Conditioned Medium on hCTLA4Ig Production in Transgenic Rice Cell Suspension Cultures (형질전환 벼 현탁세포 배양에서 혼합효율과 조정배지가 hCTLA4Ig 생산에 미치는 영향)

  • Choi, Hong-Yeol;Park, Jun-Yong;Nam, Hyung-Jin;Gong, Mi-Kyung;Yoo, Ye-Ri;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • Transgenic rice cells using RAmy3D promoter can provide high productivity, and the production of recombinant protein is induced by sugar starvation. In this system, productivity was reduced during the scale-up processes. To ensure the influences of shear stress and oxygen transfer rate, working volume and mixing performances were investigated under various agitation speeds and working volumes. In addition, inoculation methods including suspended cells and filtered cells were compared. Working volumes and shaking speeds were 300, 450 mL and 80, 120 rpm, respectively. Hydrodynamic environment of each condition was measured numerically like mixing time and $k_La$. Good mixing performance and high shear stress were measured at high agitation speed and low volume. The highest level of hCTLA4Ig was 30.7 mg/L at 120 rpm, 300 mL. When conditioned medium was used for inoculation, increased cell growth was noticed during the day 0~4 and decreased slower than filtered cells. Compared with filtered cells, the maximum hCTLA4Ig level reached 37.8 mg/L at 120 rpm, 300 mL and lower protease activity level was observed. In conclusion mixing performance is critical factor for productivity and conditioned medium can have a positive effect on damaged cells caused by hydrodynamic shear stress.

Plasminogen Activators Activities in Oviductal Epithelial Cells during Estrus Cycle in the Pig

  • Shin, Mi-Young;Kim, Tae-Shin;Kwon, Eun-Hye;Park, Soo-Bong;Park, Chun-Keun;Lee, Dong-Seok
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • The present study was undertaken to identify changes of plasminogen activators (PAs) in porcine oviductal epithelial cells (POECs) during the estrous cycle classified with post-ovulatory stages (Post-Ov), early to mid-luteal stages (Early-mid L) and pre-ovulatory (Pre-Ov) stages. The urokinase-type plasminogen activator (uPA) was only observed on day 5 and day 7 of culture in the POECs on all the estrous cycles and gradually increased according to increasing culture times, but not Early-mid L. In POECs-conditioned medium, uPA, tissue-type (tPA) and tPA-PA inhibitor (tPA-PAI) activity were observed at all culture times during estrous cycles. The uPA activity of POECs-conditioned medium on Post-Ov stage were significantly (p<0.05) decreased during prolonged cultures. On the other hand, the tPA activity of POECs-conditioned medium at Post-Ov stage was significantly (p<0.05) higher on day 5 than compared to the other days. Although was higher on day 1 at Post-Ov stage, the tPA-PAI activity of POECs-conditioned medium was significantly (p<0.05) higher on day 7 at all stage than that of day 5 of the culture. Taken together, these results suggest that uPA, tPA and tPA-PAI are produced by POECs, and the variations of the PAs activity are regulated in the different stages of the estrous cycle.

The Effect of Platelet-Rich Plasma on the Cellular Attachment of Osteoblast Cell Line (혈소판농축혈장이 조골세포주의 세포부착에 미치는 영향에 대한 연구)

  • Jung, Tae-Wook;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.281-290
    • /
    • 2003
  • Platelet-rich plasma which is made with the newly developed technique concentrating platelets 3-folds or more is also proven to be very effective method to stimulate and accelerate the healing of bone and soft tissue. This study is aimed to investigate the effect of platelet-rich plasma on the attachment of osteoblast. To evaluate the effect on human, human osteoblast cell line was cultured. Platelet-rich plasma was extracted from the blood of a healthy volunteer. The effect on the attachment was evaluated by MTT assay. To evaluate autocrine and paracrine effect on osteoblast, conditioned medium was made and compared with platelet-rich plasma. By western blot analysis, the expression of fibronectin and vitronectin in experimental groups was examined. The results were as following: The cellular attachment of osteoblast cell line increased depending on the concentration of platelet-rich plasma and conditioned medium. The amount of increasing was similar between two groups. The expression of fibronectin and vitronectin in platelet-rich plasma and conditioned medium is more than control group in western blot analysis. These findings imply that platelet-rich plasma enhance the cellular attachment by inducing fibronectin, vitronectin from osteoblast and maximize the cellular attachment by using the autocrine and paracrine effect of platelet-rich plasma.

Effects of Follicle Cells on the Chymotrypsin Resistance of Mouse Oocytes (난포세포가 생쥐 난자의 Chymotrypsin에 대한 내성에 미치는 영향)

  • Kim, Seong-Im;Bae, In-Ha;Kim, Hae-Kwon;Kim, Sung-Rye
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.407-417
    • /
    • 1999
  • Objective: Mammalian follicle cells are the most important somatic cells which help oocytes grow, mature and ovulate and thus are believed to provide oocytes with various functional and structural components. In the present study we have examined whether cumulus or granulosa cells might playa role in establishing the plasma membrane structure of mouse oocytes during meiotic maturation. Design: In particular the differential resistances of mouse oocytes against chymotrypsin treatment were examined following culture with or without cumulus or granulosa cells, or in these cell-conditioned media. Results: When mouse denuded oocytes, freed from their surrounding cumulus cells, were cultured in vitro for $17{\sim}18hr$ and then treated with 1% chymotrypsin, half of the oocytes underwent degeneration within 37.5 min ($t_{50}=37.5{\pm}7.5min$) after the treatment. In contrast cumulus-enclosed oocytes showed $t_{50}=207.0$. Similarly, when oocytes were co-cultured with cumulus cells which were not associated with the oocytes but present in the same medium, the $t_{50}$ of co-cultured oocytes was $177.5{\pm}13.1min$. Furthermore, when oocytes were cultured in the cumulus cell-conditioned medium, $t_{50}$ of these oocytes was $190.0{\pm}10.8min$ whereas $t_{50}$ of the oocytes cultured in M16 alone was $25.5{\pm}2.9min$. Granulosa cell-conditioned medium also increased the resistance of oocytes against chymotrypsin treatment such that $t_{50}$ of oocytes cultured in granulosa cell-conditioned medium was $152.5{\pm}19.0min$ while that of oocytes cultured in M16 alone was $70.0{\pm}8.2min$. To see what molecular components of follicle cell-conditioned medium are involved in the above effects, the granulosa cell-conditioned medium was separated into two fractions by using Microcon-10 membrane filter having a 10 kDa cut-off range. When denuded oocytes were cultured in medium containing the retentate, $t_{50}$ of the oocytes was $70.0{\pm}10.5min$. In contrast, $t_{50}$ of the denuded oocytes cultured in medium containing the filtrate was $142.0{\pm}26.5min$. $T_{50}$ of denuded oocytes cultured in medium containing both retentate and filtrate was $188.0{\pm}13.6min$. However, $t_{50}$ of denuded oocytes cultured in M16 alone was $70.0{\pm}11.0min$ and that of oocytes cultured in whole granulosa cell-conditioned medium was $156.0{\pm}27.9min$. When surface membrane proteins of oocytes were electrophoretically analyzed, no difference was found between the protein profiles of oocytes cultured in M16 alone and of those cultured in the filtrate. Conclusions: Based upon these results, it is concluded that mouse follicle cells secrete a factor(s) which enhance the resistance of mouse oocytes against a proteolytic enzyme treatment. The factor appears to be a small molecules having a molecular weight less than 10 kDa.

  • PDF

Ell3 Modulates the Wound Healing Activity of Conditioned Medium of Adipose-derived Stem Cells

  • Lee, Jae-Yong;Oh, Nuri;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.335-342
    • /
    • 2017
  • While adipose-derived stem cell-conditioned medium (ADSC-CM) has been demonstrated to promote skin wound healing, the mechanism regulating this effect remains unelucidated. In this study, we aimed to investigate the role of Ell3 in the wound healing activity of ADSC-CM. In vitro analysis revealed that Ell3 suppression in ADSCs impairs the promotive activity of ADSC-CM on the proliferation and migration of mouse embryonic fibroblasts (MEF) and normal human dermal fibroblasts (NHDF). Consistently, the expression of MMP family genes, which regulate cell proliferation and migration, was significantly suppressed in MEF and NHDF treated with siEll3-transfected ADSC-CM. Proinflammatory cytokines, such as interleukin-1 and interleukin-6, were highly expressed in MEF treated with siEll3-transfected ADSC-CM. The wound healing activity of siEll3-transfected ADSC-CM was significantly lower than that of the control in vivo. Our results suggest that Ell3 may contribute to the inhibition of inflammatory response during skin wound healing.

Stability Enhancement of hGM-CSF in Transgenic Nicotiana tabacum Suspension Cell Cultures

  • Lee, Sang-Yoon;Cho, Jong-Moon;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.187-191
    • /
    • 2003
  • Proteolytic enzymes existing in plant cell cultured media are the major reason for the loss of secreted human granulocyte-macrophage colony-stimulating factor (hGM-CSF). The addition of pepstatin, aprotinin and PMSF relatively decreased the proteolytic degradation of hGM-CSF in a conditioned medium, but sufficient prevention against the proteolytic activity could not be obtained with chemical protease inhibitors. Gelatin, as a competitive substrate for protease, showed a stabilizing effect in a conditioned medium. Compared to the initial hGM-CSF concentration in a conditioned medium. with 10 g/L of gelatin, 68% of the hGM-CSF remained after 5 days. In a cell culture experiment, 5 g/L of gelatin significantly stimulated the hGM-CSF production and accumulation in culture media, with no growth inhibition. compared to the controls (4.72 $\mu\textrm{g}$/L), the extracellular hGM-CSF level could be increased to 39.78 $\mu\textrm{g}$/L with the addition of 5 g/L of gelatin.

Therapeutic potential of BMSC-conditioned medium in an in vitro model of renal fibrosis using the RPTEC/TERT1 cell line

  • Yunji Kim;Dayeon Kang;Ga-eun Choi;Sang Dae Kim;Sun-ja Yang;Hyosang Kim;Dalsan You;Choung Soo Kim;Nayoung Suh
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.116-121
    • /
    • 2024
  • We investigated the therapeutic potential of bone marrow-derived mesenchymal stem cell-conditioned medium (BMSC-CM) on immortalized renal proximal tubule epithelial cells (RPTEC/TERT1) in a fibrotic environment. To replicate the increased stiffness characteristic of kidneys in chronic kidney disease, we utilized polyacrylamide gel platforms. A stiff matrix was shown to increase α-smooth muscle actin (α-SMA) levels, indicating fibrogenic activation in RPTEC/TERT1 cells. Interestingly, treatment with BMSC-CM resulted in significant reductions in the levels of fibrotic markers (α-SMA and vimentin) and increases in the levels of the epithelial marker E-cadherin and aquaporin 7, particularly under stiff conditions. Furthermore, BMSC-CM modified microRNA (miRNA) expression and reduced oxidative stress levels in these cells. Our findings suggest that BMSC-CM can modulate cellular morphology, miRNA expression, and oxidative stress in RPTEC/TERT1 cells, highlighting its therapeutic potential in fibrotic kidney disease.

p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts

  • Seok, Jin Kyung;Boo, Yong Chool
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging.