• 제목/요약/키워드: Conditional autoregressive model

검색결과 77건 처리시간 0.021초

한국에서의 금리, 환율, 주가의 상호 충격전이 효과 분석 (An Analysis on Mutual Shock Spillover Effects among Interest Rates, Foreign Exchange Rates, and Stock Market Returns in Korea)

  • 김병준
    • 국제지역연구
    • /
    • 제20권1호
    • /
    • pp.3-22
    • /
    • 2016
  • 본 연구에서는 1995년부터 1월에서 2015년 10월까지의 5,323개 일별자료로 다변량 GARCH BEKK모형을 이용하여 금리, 환율, 주가 상호간 충격전이효과를 분석하였다. 전체표본기간에서의 변동성 충격전이를 분석한 결과로는 우선 대칭모형상으로 금리변동의 충격은 주가에만 충격을 주었고 환율변동의 충격은 다른 두 변수들에 별다른 영향을 미치지 못하였는데 주가변동은 금리와 환율 모두에 유의미한 충격을 주는 것이 확인되었다. 비대칭모형상으로는 금리의 상승충격은 환율에만, 환율의 상승충격은 금리에만 상호간 유의미한 영향을 미쳤고 주가의 하락충격은 환율에만 유의미한 영향을 미치는 것으로 나타났다. 외환위기국면 소표본기간에서는 비대칭모형에서 금리의 상승충격이 환율과 주가에 영향을 미쳤고 주가의 하락충격은 환율에만 영향을 주는 것으로 나타났다. 또한 글로벌 금융위기국면 소표본기간의 비대칭모형에서는 주가의 하락충격만이 금리에 영향을 주는 것으로 나타났다. 이를 종합하면 한국의 주식시장 변동충격은 나머지 두 변수에 유의미하게 영향을 미쳤고 금리의 충격은 시기별로 주가와 환율에 영향을 미쳤으나 환율의 충격은 전체적으로 그리 크지 않게 나타남으로써 주식시장의 안정화 유도책이 시장변수의 충격을 완화시키기 위한 선결과제임이 입증되었다.

개별 주가에 반영된 시변 무리행동 연구 (Study on time-varying herd behavior in individual stocks)

  • 박범조
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.423-436
    • /
    • 2011
  • 정보기술의 발달과 함께 금융 자유화 확대 및 글로벌 금융시장의 동조화 등으로 인해 금융시장의 변동성이 현저하게 증폭되는 현상을 나타내고 있다. 최근 행태경제학 분야에서 이에 대한 주요 원인으로 금융시장의 무리행동에 대한 이론적 연구가 활발하게 진행되고 있지만 무리행동의 동적 속성에 대한 계량적 측정이 쉽지 않기 때문에 무리행동의 시계열적 속성을 파악할 수 있는 경험적 연구는 거의 전무하다. 따라서 본 연구는 QR-GARCH (quantile regression for generalized autoregressive conditional heteroskedasticity)모형을 이용하여 시변 무리행동을 시계열적으로 측정할 수 있는 무리 행동 측정법을 새롭게 제안하였다. 이 무리행동 측정법의 유용성과 개별 주가의 시변 무리행동 행태를 분석하기 위해 기업 규모별 세 그룹 (대기업, 일반기업, 소기업)으로 나눈 개별 주가 자료를 이용한 실증분석 결과를 수행하였으며 몇 가지 의미 있는 사실을 발견하였다. 우선 일부 대기업을 제외한 대부분의 주식 거래자에게서 무리행동이 발생하고 있으며 특히 일반기업 주식 거래자들의 경우 대기업과 소기업 주식 거래자들에 비해 강한 무리행동과 함께 심한 무리행동의 변화를 보여준다. 또한 예상과 달리 일부 무리행동 파라미터 시계열 자료에서 자기상관이 지속적으로 나타나고 있는데 이런 결과는 기업에 따라 주식 거래자의 쏠림현상이 오래 지속될 수도 있음을 의미한다.

지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구 (A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems)

  • 김선웅
    • 지능정보연구
    • /
    • 제16권2호
    • /
    • pp.19-32
    • /
    • 2010
  • 학계와 금융파생상품 가격결정이나 변동성매매와 같은 실무영역 모두에서 주식시장의 변동성은 중요한 역할을 한다. 본 연구는 GARCH 모형에 기초하여 한국주식시장의 변동성을 정확히 예측함으로써 변동성매매시스템의 성과를 높일 수 있는 새로운 방법을 제시하였다. 특히, 여러 연구 자료에서 밝혀지고 있는 변동성 비대칭성개념을 도입하였다. 최근 새로 개발된 한국주식시장 변동성 지수인 VKOSPI를 변동성 대용값으로 사용한다. VKOSPI는 KOSPI 200 지수옵션의 가격을 이용하여 계산된 값으로서 옵션딜러들의 변동성 예측치를 반영하고 있다. KOSPI 200 옵션시장은 1997년 시작되었으며, 발전을 거듭하여 현재 하루 거래량이 1,000만 계약을 넘어서면서 세계 최고의 지수옵션시장으로 발전하였다. 이러한 옵션시장에 반영된 변동성을 분석하는 것은 투자자들에게 좋은 투자정보를 제공하게 될 것이다. 특히, 변동성 대용값으로 VKOSPI를 사용하면 다른 변동성 대용치를 사용할 때 발생하는 통계적 추정의 문제를 피해 갈 수 있다. 본 연구는 2003년부터 2006년의 KOSPI 200 지수 일별자료를 대상으로 최우도추정방법(MLE)을 이용하여 GARCH 모형을 추정한다. 비대칭 GARCH 모형으로는 Glosten, Jagannathan, Runke의 GJR-GARCH 모형, Nelson의 EGARCH 모형, 그리고 Ding, Granger, Engle의 PARCH모형을 포함하며 대칭 GARCH 모형은 (1, 1) GARCH 모형을 이용한다. 2007년부터 2009년까지의 KOSPI 200 지수 일별자료를 대상으로 반복적 계산과정을 통해 내일의 변동성 예측값과 오르고 내리는 변화방향을 예측하였다. 분석 결과 시장변동성과 예기치 않은 주가변동 사이에는 음의 상관관계가 존재하며, 음의 주가변동은 동일한 크기의 양의 주가변동보다 훨씬 더 큰 변동성의 증가를 가져옴을 알 수 있다. 즉, 한국 주식시장에도 변동성 비대칭성이 존재함을 보여주었다. GARCH 모형을 이용하여 내일의 VKOSPI의 등락방향을 예측하고 이를 이용하여 변동성 매매시스템을 개발하였다. 내일의 변동성이 상승할 것으로 예측되면 스트래들매수전략을 이용하고 반대로 변동성이 하락할 것으로 예측되면 스트래들 매도전략을 이용한다. 변동성의 변화방향성을 맞춘 경우에는 VKOSPI 변동분을 더하고 틀린 경우에는 변동분을 뺀 누적합을 이용하여 변동성매매전략의 총수익을 계산한다. 모형추정용 자료구간의 경우 통계적 기준인 MSPE 기준으로는 PARCH 모형의 적합도가 가장 높고, 예측방향의 적중도를 재는 MCP 기준으로는 EGARCH 모형이 가장 높은 값을 보여주었다. 테스트용 자료구간의 경우에는 PARCH 모형이 모형적합도와 내일의 변동성 등락방향 예측에서 가장 좋은 결과를 보여주었다. 모형추정용 자료구간의 경우 GARCH 모형 전체에서 매매이익을 기록하고 있고 테스트용 자료구간의 경우에는 EGARCH 모형을 제외한 GARCH 모형들이 매매이익을 보여주었다. 본 연구에서 나타난 변동성의 군집과 비대칭성 현상으로부터 변동성에 비선형성이 존재함을 알 수 있었으며, 비선형성에서 좋은 결과를 보이고 있는 인공지능시스템과 비대칭 GARCH 모형을 결합한다면 제안된 변동성매매시스템의 성과를 많이 개선할 수 있을 것으로 판단된다.

함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성 (The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series)

  • 윤재은;김종민;황선영
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.667-675
    • /
    • 2018
  • 초고빈도(ultra high frequency; UHF)시계열의 함수적 변동성 측정을 위한 최신 기법인 함수적 변동성 functional GARCH : fGARCH(1, 1) 모형을 소개하고 설명하였다. 실증분석을 위해 R-code fGARCH(1, 1) 프로그램을 KOSPI/현대차 초고빈도 수익률 자료에 적합하여 예시하였다.

마르코프 랜덤필드를 이용한 무관리형 화상분할 알고리즘 (Unsuperised Image Segmentation Algorithm Using Markov Random Fields)

  • 박재현
    • 한국정보처리학회논문지
    • /
    • 제7권8호
    • /
    • pp.2555-2564
    • /
    • 2000
  • 본 논문에서는 새로운 무관리형 화상분할 알고리즘이 제안된다. 제안된 알고리즘은 화상에 내재되어 있는 구조 정보를 모델링하기 위하여 마르코프 랜덤필드의 특성을 이용하고 있다. 텍스쳐 화상은 정상상태의 가우스 마르코프 랜덤필드가 2차원의 격자구조 위에 실현된 상태로 간주되었으며 2차의 비순차근방을 갖는 조건부 자기회귀함수를 이용하여 모델링 되었다. 화상의 경계면 감출을 위하여 마스크로 선택된 두 영역에 대한 가설검정이 수행된다. 이 방법은 선택된 두 영역이 같은 종류의 텍스쳐라고 가정을 한 후 조건부 자기회귀모델의 매개변수를 최소평균제곱오차 측면에서 추정한다. 가설이 거절되면 두 영역의 상이함을 측정한 그 값이 선택된 영역에 누적된다. 이와 겉은 방법을 통하여 잠재적인 경제지도가 얻어지며, 이것을 통하여 여러 종류의 텍스쳐 화상의 분할이 미세오류경계 없이 이루어지게 된다. 제안된 알고리즘의 성능은 인공화상 뿐만 아니라 실제의 자연화상을 이용한 실험을 통하여 입증되었으며 일체의 사전정보 없이도 만족할 만한 결과를 보여 주었다.

  • PDF

시공간 분석을 이용한 외래 의료이용의 지역적 차이 분석 (Regional Disparity of Ambulatory Health Care Utilization)

  • 신호성;이수형
    • 한국지리정보학회지
    • /
    • 제15권4호
    • /
    • pp.138-150
    • /
    • 2012
  • 본 연구는 시공간분석을 이용하여 주요 만성질환인 고혈압, 당뇨병, 관절증과 총의료이용에 있어 지역별 외래의료이용 차이를 살펴보았다. 분석자료는 보건복지부와 한국보건사회연구원에서 발간하는 1996, 1999, 2002, 2005, 2008년 환자조사 자료를 이용하였으며 분석방법으로는 베이지안 계층적 시공간모형(bayesian hierarchial spatio-temporal model)을 이용하였다. 이때 지역의 공간적 상관성은 convolution CAR 모형을, 시간적 상관성은 Ornstein-Uhlenbeck 방법을 적용하여 분석하였다. 분석결과 질환별로 의료이용에 있어 지역적 차이가 존재하였다. 총의료 이용의 경우 시 군지역보다 대도시인 구지역에서 높은 상대위험비를 보인반면, 만성질환인 고혈압, 당뇨병, 관절증은 총의료이용과는 달리 강원도, 충청남북도, 전라남북도, 제주도 등 농어촌 지역에서 전국평균보다 높은 의료이용(상대위험비)을 보였다. 특히 고혈압은 부산경남 해안가 지역과 강원, 경기, 경북, 충청남도, 전북 등에서 높은 의료이용을 보였고, 관절증은 경기, 강원 일부와 충북, 충남, 전북, 전남, 경북, 경남지역 등에서, 당뇨병은 경기, 서울, 부산, 전라남북, 충청일부 지역에서 상대적으로 높은 의료이용을 보였다. 본 연구는 기존 연구와는 달리 공간적, 시간적 상관성을 고려함으로써 지역단위 분석시 공간적, 시간적 상관성을 고려하지 않음으로써 발생하는 통계적 오류를 최소화하였다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.