• Title/Summary/Keyword: Condition monitoring

Search Result 2,391, Processing Time 0.057 seconds

Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring (센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링)

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.

Vibration-based Energy Harvester for Wireless Condition Monitoring System (무선 상태감시 시스템용 진동 기반 에너지 획득 장치)

  • Cho, Sung-Won;Son, Jong-Duk;Yang, Bo-Suk;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.393-399
    • /
    • 2009
  • Historically, industrial condition monitoring has been performed by costly hard-wired sensors or infrequent checks by maintenance personnel equipped with hand held monitoring equipment. Self- powered wireless condition monitoring systems provides on-line monitoring of critical plant and machinery providing major operating cost benefits. A vibration energy harvester(VEH) is a device that converts kinetic energy occurred by machine vibration into useable electrical energy. Using VEHs to power wireless monitoring systems can yield significant benefits: increased reliability, lower life time costs and no battery disposal issues, etc. This paper proposes the novel prototype design and manufacturing of a VEH that can eliminate the effect by failed batteries.

Condition Monitoring Technology for Plant Machinery system Based on Integrated Wear Monitoring (마모발생의 통합 분석을 통한 대형 기계 윤활 시스템의 상태진단기술 적용)

  • 윤의성;장래혁;공호성;한흥구;권오관;송재수;김재덕;엄형섭
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.191-199
    • /
    • 1997
  • Condition monitoring technology was applied for an air compressor lubricating system to achieve a proactive maintenance, which could prevent a catastrophic failure and detect root causes of the conditional failure of the system. For this work, various types of wear monitoring technology were used and compared with the results of vibration and temperature measurements. Results generally showed that every technology has a limitation to failure detection, and integrated-based condition monitoring should be performed for the best results. In this work, an idea for the implementing integrated wear monitoring was suggested and demonstrated.

  • PDF

Development of Practical Integral Condition Monitoring System for A Small Turbojet Engine Using SIMULINK and LabVIEW (SIMULINK와 LabVIEW를 이용한 소형 터보제트 엔진의 실용 통합 상태 진단 시스템 개발)

  • Kong, Changduk;Kho, Seonghee;Park, Gilsu;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-88
    • /
    • 2013
  • In currently developed engine condition monitoring systems, most field engine maintenance engineers have difficulties to use them in fields due to complexity, unpractical use, lack of understanding, etc. Therefore a practical usable engine condition monitoring system must be needed. This work proposes a practical performance condition monitoring of a small turbojet engine through comparing between the on-line performance monitoring data and the initial clean performance data calculated by the base engine performance model. Moreover the proposed monitoring system checks the gas path components' on-line health condition through comparing the component performance characteristics between the running engine represented as a deteriorated engine or a degraded engine and the base engine performance model represented as a clean engine. The proposed condition monitoring system is coded in a friendly GUI type program for easy practical application by a commercial tool, MATLAB/SIMULINK and LabVIEW.

A Study on GUI type On-line Condition Monitoring Program for A Turboprop Engine Using LabVIEW$^{(R)}$ (LabVIEW를 이용한 터보프롭 엔진의 GUI기반 온라인 상태감시 프로그램에 관한 연구)

  • Kong, Chang-Duk;Kim, Keon-Woo;Kim, Ji-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.86-93
    • /
    • 2011
  • Recently, development and application of condition monitoring and diagnostic system for improvement of durability and reliability and reduction of operating cost is generalized in the aircraft propulsion system. Expecially, for reliable operation of the high altitude and a long time and condition monitoring system to identify faults and degradations of its propulsion system should be needed. This work proposed a GUI-based On-line condition monitoring program using LabVIEW by PT6A-67 turboprop engine. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between performance results calculated by the base performance simulation program and measuring engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed on-line monitoring system.

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반의 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Shim, Min-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.872-878
    • /
    • 2008
  • Many industrial operations require continuous or nearly-continuous operation of machines, interruption of which can result in significant cost loss. The condition monitoring of these machines has received considerable attentions in recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is to develop a new type of smart sensor for on-line condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This system is capable for signal preprocessing task and analog to digital converter which is controlled by CPU. This sensor communicates with a remote site PC using TCP/IP protocols. The developed sensor executes performance tests for data acquisition accuracy estimations.

Condition monitoring and rating of bridge components in a rail or road network by using SHM systems within SRP

  • Aflatooni, Mehran;Chan, Tommy H.T;Thambiratnam, David P.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.199-211
    • /
    • 2015
  • The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.

Can we substitute the intuition of an experienced bridge inspector by monitoring?

  • Wenzel, Helmut;Tanaka, Hiroshi;Hollrigl-Binder, Michaela;Allmer, Helga
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.577-592
    • /
    • 2015
  • Damage quantification is a major goal of the SHM community. Methodologies to introduce a quantity for actual condition of a structure into the assessment process are desired. The idea that the condition of a structure is represented in the character of its dynamic response is fully accepted by the SHM community. The VCLIFE methodology quantifies condition analyzing input from monitoring.

Condition assessment of reinforced concrete bridges using structural health monitoring techniques - A case study

  • Mehrani, E.;Ayoub, A.;Ayoub, A.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.381-395
    • /
    • 2009
  • The paper presents a case study in which the structural condition assessment of the East Bay bridge in Gibsonton, Florida is evaluated with the help of remote health monitoring techniques. The bridge is a four-span, continuous, deck-type reinforced concrete structure supported on prestressed pile bents, and is instrumented with smart Fiber Optic Sensors. The sensors used for remote health monitoring are the newly emerged Fabry-Perot (FP), and are both surface-mounted and embedded in the deck. The sensing system can be accessed remotely through fast Digital Subscriber Lines (DSL), which permits the evaluation of the bridge behavior under live traffic loads. The bridge was open to traffic since March 2005, and the collected structural data have been continuously analyzed since. The data revealed an increase in strain readings, which suggests a progression in damage. Recent visual observations also indicated the presence of longitudinal cracks along the bridge length. After the formation of these cracks, the sensors readings were analyzed and used to extrapolate the values of the maximum stresses at the crack location. The data obtained were also compared to initial design values of the bridge under factored gravity and live loads. The study showed that the proposed structural health monitoring technique proved to provide an efficient mean for condition assessment of bridge structures providing it is implemented and analyzed with care.

Development of Distribution Transformer with Condition Monitoring Sensors and Data Processing Unit (상태감시용 센서를 내장한 배전용 변압기 및 데이터 처리장치 개발)

  • Jung, Joon-Hong;Yu, Nam-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.201_202
    • /
    • 2009
  • This paper presents a design methodology of a distribution transformer with condition monitoring sensors and its data processing unit. The proposed distribution transformer includes various type of condition monitoring sensors such as load current/voltage, temperature and heat aging of insulating oil. The data processing unit is installed at the distribution transformer site. It integrates sensed data and transmits these to a central server system. The proposed distribution transformer and its data processing unit will help an on-line condition monitoring system for distribution transformers.

  • PDF