• Title/Summary/Keyword: Condition Parameter

Search Result 1,903, Processing Time 0.032 seconds

Adaptive Receding Horizon $H_{\infty}$ Controller Design for LPV Systems

  • P., PooGyeon;J., SeungCheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.535-535
    • /
    • 2000
  • This paper presents an adaptive receding horizon H$_{\infty}$ controller for the linear parameter varying systems in the deterministic environment, which combines a parameter range estimator and a robust receding horizon H$_{\infty}$ controller using the parameter bounds. Using parameter set inclusion and terminal inequality condition, the closed-loop system stability is guaranteed. It is shown that the stabilizing adaptive receding horizon H$_{\infty}$ controller guarantees the H$_{\infty}$ norm bound.

  • PDF

The Effects of Design Parameters for Small Scale Hydro Power Plant with Rainfall Condation (강우상태에 의한 소수력발전소 설계인자의 영향)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

Parameter Convergence Properties of Adaptive Identifier using Power Spectrum Analysis (파워 스펙트럼 해석법을 사용한 적응 추정자의 파라미터 수렴특성)

  • 민병태;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.740-747
    • /
    • 1988
  • This paper describes the parameter convergence property for an adaptive identifier and deals with the stability of the adaptive system in terms of the general error model. The Persistent Excitation (PE) condition to guarantee parameter convergence is derived using the Power Spectrum Analysis. In the adaptive identifier designed under the assumptions that the plant has not unmodelled dynamics, it can be shown that the equilibrium points of adjustable parameters are independent on the position or the number of input spectrums, if the adaptive signal is PE. When the plant contains unmodelled dynamics and the same controller is used, the PE condition can still hold but the parameter tuned values are changed with the spectrum.

  • PDF

A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER

  • Lee, Chang-Ock;Park, Eun-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.461-477
    • /
    • 2017
  • A dual substructuring method with a penalty term was introduced in the previous works by the authors, which is a variant of the FETI-DP method. The proposed method imposes the continuity not only by using Lagrange multipliers but also by adding a penalty term which consists of a positive penalty parameter ${\eta}$ and a measure of the jump across the interface. Due to the penalty term, the proposed iterative method has a better convergence property than the standard FETI-DP method in the sense that the condition number of the resulting dual problem is bounded by a constant independent of the subdomain size and the mesh size. In this paper, a further study for a dual iterative substructuring method with a penalty term is discussed in terms of its convergence analysis. We provide an improved estimate of the condition number which shows the relationship between the condition number and ${\eta}$ as well as a close spectral connection of the proposed method with the FETI-DP method. As a result, a choice of a moderately small penalty parameter is guaranteed.

Condition Parameter-based On-line Performance Reliability (상태 파라메터 기반의 온라인 성능 신뢰도)

  • Kim, Yon-Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.103-108
    • /
    • 2007
  • This paper presents the conceptual framework for estimating and predicting system's susceptibility to failure as function of condition parameter value which is representing the current status of performance measure using on-line performance reliability. The performance of such system depends on one parameter with a probability distribution that degrades with time gracefully. Performance reliability represents the probability that physical performance will remain satisfactory over a finite period of time or usage cycles in the future. An empirical physical performance function is constructed to incorporate explanatory variables (operating and environmental conditions) over a time or usage dimension. This function enables one to model device performance and the associated classical reliability measures simultaneously, in the performance domain and time domain. The conditional performance reliability structure developed represents a tool to predict system performance over time or usage for next usage period. By enabling such a framework, it can bring us more efficient planning and execution in system's operation control as well as maintenance to reduce costs and/or increase profits.

Parameter Design and Analysis for Aluminum Resistance Spot Welding

  • Cho, Yong-Joon;Li, Wei;Hu, S. Jack
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • Resistance spot welding of aluminum alloys is based upon Joule heating of the components by passing a large current in a short duration. Since aluminum alloys have the potential to replace steels fur automobile body assemblies, it is important to study the process robustness of aluminum spot welding process. In order to evaluate the effects of process parameters on the weld quality, major process variables and abnormal process conditions were selected and analyzed. A newly developed two-stage, sliding-level experiment was adopted fur effective parameter design and analysis. Suitable ranges of welding current and button diameters were obtained through the experiment. The effects of the factors and their levels on the variation of acceptable welding current were considered in terms of main effects. From the results, it is concluded that any abnormal process condition decreases the suitable current range in the weld lobe curve. Pareto analysis of variance was also introduced to estimate the significant factors on the signal-to-noise (S/N) ratio. Among the six factors studied, fit-up condition is found to be the most significant factor influencing the SM ratio. Using a Pareto diagram, the optimal condition is determined and the SM ratio is significantly improved using the optimal condition.

Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition (비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석)

  • Kim, Sang Ug;Lee, Yeong Seob
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.567-579
    • /
    • 2015
  • This study performed the non-stationary flood frequency analysis considering time-varying parameters of a probability density function. Also, return period and risk under non-stationary condition were estimated. A stationary model and three non-stationary models using Generalized Extreme Value(GEV) were developed. The only location parameter was assumed as time-varying parameter in the first model. In second model, the only scale parameter was assumed as time-varying parameter. Finally, the both parameters were assumed as time varying parameter in the last model. Relative likelihood ratio test and Akaike information criterion were used to select appropriate model. The suggested procedure in this study was applied to eight multipurpose dams in South Korea. Using relative likelihood ratio test and Akaike information criterion it is shown that the inflow into the Hapcheon dam and the Seomjingang dam were suitable for non-stationary GEV model but the other six dams were suitable for stationary GEV model. Also, it is shown that the estimated return period under non-stationary condition was shorter than those estimated under stationary condition.

A DUAL ALGORITHM FOR MINIMAX PROBLEMS

  • HE SUXIANG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.401-418
    • /
    • 2005
  • In this paper, a dual algorithm, based on a smoothing function of Bertsekas (1982), is established for solving unconstrained minimax problems. It is proven that a sequence of points, generated by solving a sequence of unconstrained minimizers of the smoothing function with changing parameter t, converges with Q-superlinear rate to a Kuhn-Thcker point locally under some mild conditions. The relationship between the condition number of the Hessian matrix of the smoothing function and the parameter is studied, which also validates the convergence theory. Finally the numerical results are reported to show the effectiveness of this algorithm.

A CONDITION OF UNIQUENESS AND STABILITY IN A BURSTING MODEL

  • Lee, Eui-Woo
    • The Pure and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • We consider one class of bursting oscillation models, that is square-wave burster. One of the interesting features of these models is that periodic bursting solution need not to be unique or stable for arbitrarily small values of a singular perturbation parameter $\epsilon$. Recent results show that the bursting solution is uniquely determined and stable for most of the ranges of the small parameter $\epsilon$. In this paper, we present a condition of uniqueness and stability of periodic bursting solutions for all sufficiently small values of $\epsilon$ > 0.

  • PDF