• Title/Summary/Keyword: Condition Inspection

Search Result 904, Processing Time 0.026 seconds

Development of Environment-Friendly Demolition Methods of RC Pier (콘크리트 교각의 친환경적 해체공법 개발)

  • Lee, Chang-Soo;Kwon, Jae-Ken;Chung, Bong-Jo;Kim, Tae-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.97-105
    • /
    • 2004
  • As modern society has been progressed, the demolition method of concrete structure that satisfy the condition of safety, economic efficiency, and environment-friendliness is required. This study investigated problems of existing demolition methods and developed modified method minimizing cooling water and sludge for demolition job. It was also verified the validity of this method based on the finite element methods. A analysis parameters as a number, depth and size of boring, and self weight were introduced for this study, and gave optimal condition for the demolition job and analysis.

A Study on Optimal Operation Conditions for an Electronic Device Alignment System by Using Design of Experiments (실험계획법을 이용한 전자부품 위치정렬장치 최적 운영조건 사례연구)

  • Lee, Dong Heon;Lee, Mi Lim;Bae, Suk Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.453-466
    • /
    • 2015
  • Purpose: The purpose of this study is to design a systematic method to estimate optimal operation conditions of design variables for an electronic device alignment system. Method: The 2-level factorial design and the central composite design are used in order to plan experiments. Based on the experiment results, a regression model is established to find optimal conditions for the design variables. Results: 3 of 5 design variables are selected as major factors that affect the alignment system significantly. The optimized condition for each variable is estimated by using a sequential experiment plan and a quadratic regression model. Conclusion: The method designed in this study provides an efficient and systematic plan to select the optimized operation condition for the design variables. The method is expected to improve inspection accuracy of the system and reduce the development cost and period.

Laboratory Tests and Numerical Simulations for Prediction of Stress-Stain Behavior Using Construction Materials for Embankment (제방축조재료의 응력-변형거동 예측을 위한 실내시험 및 수치해석)

  • Jeong, Sang-Guk;Koo, Ja-Kap
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.215-219
    • /
    • 2010
  • The evaluation of the mechanical properties and behavior is very important for the design of embankment using granular materials. In this research, the lab. tests with Nak-dong river sand were conducted to find out mechanical properties related to stress-strain behavior. Also, numerical simulations which can express the behavior of granular material were conducted by distinct element method. Distinct element method can play a import role to predict stress-strain behavior for different confining stress and loading condition if micro-parameters can be estimated in specific condition.

Investigation of a management framework for condition assessment of concrete structures based on reusable knowledge and inspection

  • Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.249-269
    • /
    • 2010
  • Managing and reusing knowledge in engineering and construction sectors can lead to greater competitive advantage, improved designs, and more effective management of constructed facilities. The use of Information Technology (IT) in design and construction can exploit strategic opportunities for new ways of integration, sharing and facilitating information and knowledge in any field of engineering. The integrating of separate areas of IT can be used to bring a group of experts and specialists in any field of engineering closer together by allowing them to communicate and exchange information and expertise that facilitate knowledge capture, sharing, and reuse. A lack of an advisory management system and a need to marshal all available data in a common format has indicated the need for an integrated engineering computing environment to investigate concrete repair problems. The research described in this paper is based upon an evaluation management system (EMS) which comprising a database management system (REPCON) alongside visualisation technologies and evaluation system (ECON) is developed to produce an innovative platform which will facilitate and encourage the development of knowledge in educational, evolution and evaluation modes of concrete repair. This allows us to create assessment procedures that will allow the current condition of the concrete structure and its components to be expressed numerically using a confidence level (CL) so as to take the best course of action in the repair and maintenance management. The explained rating system, which is related to structural integrity and serviceability of the structure, allows the confidence level to be determined by visual inspection and the descriptive information and pictures taken from an available REPair of CONcrete (REPCON) database.

Dynamic Modeling of PIG Flow in Natural Gas Pipelines (천연가스배관내 피그흐름의 동적모델링)

  • Kim, Sang-Bong;Nguyen, Tan Tien;Yoo, Hui-Ryong;Rho, Yong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.241-246
    • /
    • 2001
  • This paper introduces modeling and solution for the dynamics of pipeline inspection gauge (PIG) flow in natural gas pipeline. Without of bypass flow, the dynamic behavior of the PIG depends on the different pressure between the rear and nose parts, which is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. With bypass flow, the PIG dynamics also depends on the amount of bypass flow across its body. The mathematical model are derived for unsteady compressible flow of the PIG driving and expelled gas, and for dynamics of the PIG. The bypass flow is assumed to be incompressible with the condition of its Mach number smaller than 0.45. The method of characteristic (MOC) and the Runge-Kutta method are used to solve the system governing equations. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show that the derived mathematical model and the proposed solution are effective for estimation the dynamics of the PIG with and without bypass flow under given operational condition.

  • PDF

Experimental Study on the Ductile Behavior of Reinforced Concrete Beams with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 연성거동에 관한 실험적 고찰)

  • Park, Hyun-Jung;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.181-189
    • /
    • 2001
  • Recently, the need for strengthening reinforced concrete(R.C.) structure has been increased, particularly when there is an increase in load requirements, a change in use, a degradation problem, or design/construction defects. The use of composite materials for structural repair presents several advantages and has been investigated all over the world. It is well known that the incorporation of carbon fiber sheet(CFS) with concrete is one of the most effective ways to strengthen the R.C. structure. In this papers, experimentally investigated the ductile behavior of the R.C. beams strengthened with CFS, and provided the basic data for design of R.C. beams strengthened with CFS. Tests were carried out with 15 beams ($20cm{\times}30cm{\times}240cm$) reinforced with CFS, and with parameters including and the ratio of tensile reinforcement to that of balanced condition and number of CFS. The results show that strengthened and non-strengthened beams exhibit different ductile behovior. Non-strengthened beams showed increase of ductility as amount of the tensile reinforcement decreased. However, bearing capacity of the CFS-strengthened beams are dictated by the strength of the CFS layers that a very high ductility is indicated for the beams with large number of CFS.

  • PDF

Study on the Development of Road Icing Forecast and Snow Detection System Using State Evaluation Algorithm of Multi Sensoring Method (복합 센서의 상태 판정 알고리즘을 적용한 노면결빙 예측 및 강설 감지 시스템 개발에 관한 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.113-121
    • /
    • 2013
  • The road icing forecast and snow detection system using state evaluation algorithm of multi sensor optimizes snow melting system to control spread time and amount of chemical spread application This system operates integrated of contact/non-contact sensor and infrared camera. The state evaluation algorithm of the system evaluates road freezing danger condition and snowfall condition (snowfall intensity also) using acquired data such as temperature/humidity, moisture detection and result of image signal processing from field video footage. In the field experiment, it proved excellent and reliable evaluated result of snowfall state detection rate of 89% and wet state detection rate of 94%.

Deep reinforcement learning for optimal life-cycle management of deteriorating regional bridges using double-deep Q-networks

  • Xiaoming, Lei;You, Dong
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.571-582
    • /
    • 2022
  • Optimal life-cycle management is a challenging issue for deteriorating regional bridges. Due to the complexity of regional bridge structural conditions and a large number of inspection and maintenance actions, decision-makers generally choose traditional passive management strategies. They are less efficiency and cost-effectiveness. This paper suggests a deep reinforcement learning framework employing double-deep Q-networks (DDQNs) to improve the life-cycle management of deteriorating regional bridges to tackle these problems. It could produce optimal maintenance plans considering restrictions to maximize maintenance cost-effectiveness to the greatest extent possible. DDQNs method could handle the problem of the overestimation of Q-values in the Nature DQNs. This study also identifies regional bridge deterioration characteristics and the consequence of scheduled maintenance from years of inspection data. To validate the proposed method, a case study containing hundreds of bridges is used to develop optimal life-cycle management strategies. The optimization solutions recommend fewer replacement actions and prefer preventative repair actions when bridges are damaged or are expected to be damaged. By employing the optimal life-cycle regional maintenance strategies, the conditions of bridges can be controlled to a good level. Compared to the nature DQNs, DDQNs offer an optimized scheme containing fewer low-condition bridges and a more costeffective life-cycle management plan.

An Experimental Study on Health Monitoring System of Smart Structure (스마트구조물 계측시스템에 관한 실험적 연구)

  • Yoon, Hee-Jun;Yoo, Byung-Eok;Han,, Chang-Pyong;Ahn, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.191-202
    • /
    • 2006
  • Computer programs for a structure design help the optimum design that considers each condition. however, the findings can not explain accurately a behavior of the real-living structure because each condition of a structure is simplified and generalized. The smart structure is introduced to overcome these problems, and we can understand a behavior of the real-living structure by means of Health Monitoring System. In this study, we compare a behavior by means of the existing structure design with a behavior of the living structure by means of an experiment. As a result, we examine adequacy of a measuring system and developing possibility in the future.

Determination of Surge Tank Scale for Dam Safety Management (댐 안전관리를 위한 조압수조의 규모 결정)

  • Lee, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.164-174
    • /
    • 2007
  • Phenomena of hydraulic transient such as water hammer should be analyzed to design the pipeline systems effectively in dam. Surge tanks generally are used to reduce change in pressure caused by hydraulic transient from load changes on the turbines. In this study, the appropriate scale of surge tank with chamber is investigated for dam safety management. The variation of water level in the surge tank are computed using governing equation. Using the Thoma-Jaeger's stability condition, static and dynamic stability are investigate for the cases of flood water level, normal high water level, rated water level and low water level. Finally appropriate diameters of shaft and chamber are determined in the surge tank with chamber.