• 제목/요약/키워드: Condenser water temperature

검색결과 147건 처리시간 0.024초

가스내장 히트파이프의 냉시동특성과 성능에 관한 연구 (A Study on the Chilling Start-up Characteristics and Performance of a Gas Loaded Heat Pipe)

  • 홍성은;강환국
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.915-922
    • /
    • 2006
  • Considering heat pipe design principles in fabrication and operational performances, water is one of the most recommended working fluids to make mid to low tempera lure heat pipes. But the conventional water heat pipes might encounter the failure in a cold start-up operation when socked at a chilling temperature lower than the freezing point. If they are subjected to a heat supply for start-up at a temperature around $-20^{\circ}C$, the rate of the vapor flow and the corresponding heat transfer from the evaporator to the condenser is so small that the vapor keeps to stick on the surface of the chilling condenser wall, forming an ice layer, resulting in a liquid deficiency in the evaporator. This kind of problems was resolved by Kang et al. in 2004 by adopting a gas loading heat pipe technology to the conventional water heat pipes. This study was conducted to examine a chilling start-up procedure of gas loading heat pipes by investigating the behaviors of heat pipe wall temperatures. And the thermal resistance of the gas loaded heat pipe that depends on the operating temperatures and heat loads was measured and examined. Two water heat pipes were designed and fabricated for the comparison of performances, one conventional and the other loaded with $N_2$ gas. They were put on start-up test at a heat supply of 30 W after having been socked at an initial temperature around $-20^{\circ}C$. It was observed that the gas loaded one had succeeded in chilling start-up operation.

온실난방을 위한 히트펌프의 성능에 관한 연구 (A Study on the Greenhouse Heating Performance of Heat Pump System)

  • 윤용철;서원명;이석건
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.94-102
    • /
    • 1998
  • This experiment was carried out to study on the effect of greenhouse heating by water-to-water heat pump system employing heating water tank(ground water) as the heat source. Followings are the results obtained from this study ; 1. The heat amount absorbed from evaporator and the heat amount rejected from condenser were approximately 9, 000~ 12, 000kcal/h and 13, 000~ 17, OOOkcal/h, respectively. 2. The heat efficiencies of evaporator and condenser used in this experiment were approximately 79% and 83%, respectively. 3. The maximum heating load estimated for the experimental greenhouse was about 18, 000 ~ 25, OOOkcal/h, which was found to be about 28 ~ 32% higher than the heating capacity of the heat pump system adopted for this experiment. 4. The coefficients of performance(COP) for the heat pump and the total heat pump system were approximately 2.9~3.5 and 1.5~2.4, respectively. 5. The coefficient of performance(COP) calculated from the Mollier Diagram was about 3.2 ~ 3.4, which was reasonably close to the COP estimated on the basis of measured values. 6. The temperature of experimental greenhouse heated by the heat pump system could be maintained about 12~15 。C higher than that of a control greenhouse.

  • PDF

하수열을 이용한 냉난방시스템에 관한 연구 (Heating and Cooling System using the Sewage Source Absorption Refrigeration and Heat Pump Cycle)

  • 이용화;신현준;윤희철;박현건
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.19-26
    • /
    • 2007
  • This paper concerns the study of absorption refrigeration and heat pump cycle to use sewage. Simulation analysis on the double-effect absorption refrigeration cycle with parallel and two-stage heat pump cycle has been performed. The working fluid is Lithium Bromide and water solution. The absorption refrigeration cycle use sewage as a cooling water for the absorber and condenser, and absorption refrigeration cycle does that as a chilled water for the evaporator of the first stage cycle. And the two-stage cycle consists of coupling double-effect with parallel and single effect cycle so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as a absorber temperature on the coefficient of performance have been studied for absorption refrigeration and heat pump cycle.

수냉형 직렬방식 2중효용 흡수식 냉방기의 열해석과 최적 설계 (Thermal Analysis and Optimum Design of Water-Cooled, Series-Flow Type, Double-Effect Absorption Heat Pump)

  • 오명도;김영률;김선창;김영인
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.332-341
    • /
    • 1992
  • An absorption heat pump cycle has been modeled and simulated to analyze the system performance of water-cooled, series-flow, double-effect absorption heat pump, which can be applied to a direct gas fired cooling system with the medium range of cooling capacity (15RT level). Effect of absorption cooling system parameters, such as concentration difference, inlet temperature of cooling water, 1st generator temperature, leaving temperature differences of condenser and evaporator and efficiency of solution heat exchanger, has been investigated in the view of system cooling performance.

  • PDF

쇼케이스의 현장 데이터 측정 및 분석 (Measurement and Analysis of Showcase Field Data)

  • 신유환;오왕규;박기호;김영일;신영기
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.436-443
    • /
    • 2005
  • Experimental study was performed to understand the operation of an on-site showcase working in a super discount store. Inlet and outlet temperatures of evaporator, condenser, expansion valve and compressor were measured for both air and refrigerant sides. Electric power consumption of compressors, defrosting heaters, cooling water pumps and etc. were measured. The operating characteristics of the showcase system under various working conditions were analyzed and discussed. During the defrosting process, the air temperature inside the showcase increased to $15^{\circ}C$, which gave harmful effect to the frozen food. The collected data will serve as valuable information for diagnosing and improving the performance of showcases.

두개의 열원이 부착된 히트파이프의 동작 특성 (Operating characteristics of a heat pipe with two heat sources)

  • 박종흥;노홍구;이재헌
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.303-315
    • /
    • 1998
  • Numerical and experimental studies on a heat pipe with two heat sources have been performed to investigate the operating characteristics. Numerical analysis was performed based on the cylindrical two-dimensional incompressible laminar flow for the vapor space and the conjugate heat transfer for the entire heat pipe. Experimental study with a 0.45 m length copper-water heat pipe was also performed to validate the numerical modeling for the heat input range from 29 W to 47 W on each heater. As results, the temperature profiles at the outer wall for the single active heat source as well as the temperature profiles for the switching operation between two heat sources are suggested. Due to the axial conduction, it is found that the temperature drop between the evaporator and the condenser appears small when the heat source closer to the condenser is turned on. For the switching operation in the present study, the transient time is about 700s and the temperatures at the locations of both heat source are same in 130s after switching.

Analysis on Heating Effects of the Vertical Type Geothermal Heat Pump System

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa
    • Journal of Biosystems Engineering
    • /
    • 제39권2호
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: This paper is aimed at analyzing the heating performance of the vertical closed loop type Geothermal Heat Pump System (GHPS) distributing the farm site and providing basic data of the GHPS. Method: Seedling greenhouse heating was made from October 2012 to May 2013. The seedling greenhouse was divided into 4 sectors (A, B, C and D zone, total $3,300m^2$) with different temperatures. It was heated from 5PM to 8AM, and during the night the greenhouse was covered by non-woven fabric thermal curtains along the upper 2m of the greenhouse for temperature maintenance. In order to analyze the heating performance of the GHPS, power consumption and operating time of the GHPS, inlet and outlet water temperature of the condenser, temperatures of each zone of the greenhouse, and ambient temperature were measured. Results: When operating only one heat pump unit, heat generated in the condenser decreased as the experiment progressed and power consumption increased correspondingly. However, the heating coefficient of performance decreased from 3.3 to 2.0 rapidly. Also, when operating two heat pump units, heat generated in the condenser decreased and power consumption increased. Heating coefficient of performance decreased from 4.5 to 3.7 rapidly. When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and minimum ambient temperature was $-20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. Conclusion: When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and the minimum ambient temperature was $20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. When operating only one heat pump unit, the heating COP was 2.0~3.3, and when operating 2 heat pump units, it was 3.7~4.5. If several heat pumps are installed in one GHPS, it is suggested that all heat pumps be operated except in special cases. Because the scale of the water pumps are set to the scale of when all heat pump units are operating, if even one unit is not operating, the power consumption will increase. That becomes the cause of COP decrease.

Revised VX흡수식 냉동사이클의수치 해석 (A Numerical Analysis of a Revised VX Absorption Cooling Cycle)

  • 장원영;정은수;김병주
    • 설비공학논문집
    • /
    • 제13권6호
    • /
    • pp.505-513
    • /
    • 2001
  • A revised VX cycle using ammonia/water as the working fluid is a cycle which is suitable to produce cooling utilizing low temperature hat sources. The cycle was analyzed numerically to investigate the effects of the design and operating conditions on the performance. It was shown that both COP and cooling capacity were significantly influenced by the performance of he rectifier. Insufficient UA of the rectifier reduced both ammonia mass fraction and mass flow rate of the vapor entering the condenser, which produced cooling effect in the evaporator. As the temperature and the mass flow rate of the heat source increased, both COP and exergetic efficiency decreased due to the irreversibilities produced in heat exchangers, but cooling capacity did not vary much. Cooling capacity increased significantly as the coolant temperature decreased, although COP and exergetic efficiency remained nearly constant.

  • PDF

발전소용 공랭식 응축기(ACC)의 작동조건 변화에 따른 성능특성에 대한 수치적 연구 (A Numerical Study on the Performance Characteristics of a Power Plant Air-Cooled Condenser (ACC) Affected by Changes in Operating Conditions)

  • 박경민;주기홍;박창용
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.243-250
    • /
    • 2017
  • A numerical study was conducted to calculate the cooling capacity variation of a power plant ACC (air-cooled condenser) caused by changes in operating conditions. A numerical model was developed using the ${\varepsilon}-NTU$ and finite volume method, containing 100 elements for a single low fin tube. The model was validated through a comparison of cooling capacity between the simulated values and manufacturer's data. Even though simple assumptions and previously presented heat transfer correlations were applied to the model, the prediction error was 1.9%. The simulated variables of the operating conditions were air velocity, air temperature, and mass flux. The analysis on the variation of thermal resistance along the tube showed that the water side thermal resistance was higher than the air side thermal resistance at the downstream end of the tube, indicating that the ACC capacity could be increased by applying technology to enhance in-tube flow condensation heat transfer.

해수온도차에너지이용 냉난방시스템 운전특성에 관한 연구 (A Study on Operating Characteristics of Heat Pump System Using Sea Water Sources)

  • 장기창;백영진;윤형기;나호상
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 2009
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF