• Title/Summary/Keyword: Condenser Fin

Search Result 75, Processing Time 0.02 seconds

Heat Transfer Characteristics of Cost Effective Plate Fin-tube Condenser for Household Refrigerator (가정용 냉장고의 응축기 비용저감을 위한 판형 핀-관 열교환기의 열전달 특성)

  • Son, Young-Woo;Lee, Jang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.323-327
    • /
    • 2008
  • 본 연구는 판형 핀-관 열교환기의 열전달 특성을 상용 CFD 코드인 SC/Tetra를 사용하여 해석한 내용에 관한 것이다. 해석조건은 입구속도 0.63 m/s, 튜브온도 $44.5^{\circ}C$이다. 해석 열교환기는 총6가지로 검토하였으며 각각의 온도분포와 유동패턴을 해석하고 판형 핀-관 열교환기의 열전달 특성을 비교 검토하였다.

  • PDF

Advances In Air-Cooled Heat Exchanger Technology for Residential Air-Conditioning

  • Webb Ralph L.;Kim Nae-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.184-195
    • /
    • 2005
  • This paper describes the recent work on advanced technology concepts applied to air cooled heat exchangers for residential air-conditioning. The concepts include vortex generators for the air-side, micro-fin or flat tubes for the refrigerant-side. Advances in understanding of heat transfer mechanisms, predictive models are discussed.

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

Study on the pressure drop of ternary refrigerant R-407c during condensation inside horizontal micro-fin tubes (3성분 혼합냉매 R-407c의 수평 마이크로핀관내 응축압력강하에 관한 연구)

  • 정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.210-218
    • /
    • 1998
  • Experimental results for forced convection condensationof Refrigerant-22 and ternary Refrigerant-407c(HFC-32/125/134a 23/25/52 wt%) considered as a substitute R-22 inside horizontal micor-fin tubes are presented. The test section was horizontal double-tubed counterflow condenser with a length 4000 mm micro-fin tube having 9.53 mm OD., 0.2 mm fin height and 60 fins. The refrigerants R-22 and R-407c were cooled by a coolant circulated in a surrounding annulus. The range of parameters of mass velocity was varied from 102.1 to 301.0kg/($\textrm{m}^{2}.s$) with inlet quality 1.0. Both refrigerant R-22 and its alternative refrigerant R-407c were tested within the same range of parameters. At the given experimental conditions for R-22 and R-407c the pressure drops for R-407c were considerably higher than those for R-22 at micro-fin tubes. Over the mass velocity range tested the PF(penalty factor)was lower than the increasing ratio of heat transfer area by fins. Based on the data correlation was proposed for predicting the frictional pressure drops for R-22 and R-407c for a duration of condensation inside a horizontal micro-fin tube.

  • PDF

Failure Analysis of Condenser Fin Tubes of Package Type Air Conditioner for Navy Vessel (함정용 패키지 에어콘 응축기 핀튜브(Cu-Ni 70/30) 누설파괴 원인 분석)

  • Park, Hyoung Hun;Hwang, Yang Jin;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • In 2015, a fin tube (Cu-Ni 70/30 alloy) of package type heat exchanger for navy vessel was perforated through the wall which led to refrigerant leakage. This failure occurred after only one year since its installation. In this study, cause of the failure was determined based on available documents, metallographic studies and computational fluid dynamics simulation conducted on this fin tube. The results showed that dimensional gap between inserted plastic tube and inside wall of fin tube is the cause of the swirling turbulent stream of sea water. As a result of combination of swirling turbulence and continuing collision of hard solid particles in sea water, erosion corrosion has begun at the end of inserted plastic tube area. Crevice corrosion followed later in the crevice between the outer wall of plastic tube and inner wall of fin tube. It was found that other remaining tubes also showed the same corrosion phenomena. Thorough inspection and prompt replacement will have to be accomplished for the fin tubes of the same model heat exchanger.

A Study on Enhanced Tubes for Electric Utility Steam Condensers (발전소 수증기 응축기용 전열 촉진관에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.31-41
    • /
    • 2016
  • A computer program that simulates electric utility steam condensers was developed, and used to investigate the effects of enhanced tubes in steam condensers. The replacement of smooth tubes with enhanced tubes reduces the steam condensing temperature, and increases the efficiency of the electric utility. Therefore, a significant amount of power may be reserved without any modification of the utility. Three enhanced tubes, corrugated, low fin with internal ribs, and low fin with internal 3-D roughness, were considered. The results showed that there is an optimal internal roughness height. Low fin tubes with a 3-D roughness were superior to the other enhanced geometries. This was attributed to longitudinal vortices generated between the circumferential dimples. An additional 0.5 MW~1.3 MW was possible when smooth tubes were replaced with enhanced tubes in the 600 MW electric utility condenser. The additional power increased with increasing coolant temperature. More investigations on fouling, corrosion, and mechanical properties will be necessary for actual applications of enhanced tubes in electric utility condensers.

Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes (마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

A Study on Finned Tube Used in Turbo Refrigerator( I ) -for Condensation Hear Transfer- (터보 냉동기용 핀튜브에 관한 연구 ( I ) - 응축 열전달에 관하여 -)

  • Cho, Dong-Hyun;Han, Kyu-Il;Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.5 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Through the early 1900's, the evolution of the surface condenser was closely tied to the development of steam engine and the turbine. As the chemical and petroleum industries evolved in the 1900's, the use of surface condensers in many different processes. Today, industry uses condensers in many shapes and sizes. The actual condensation process occurs on the outside surface of tubes. The nature of this surface geometry affects the condenser's heat transfer performance. The first condensers were built with plain tubes. As tube manufacturing techniques advanced, manufacturers started making tubes with integral fins. In the 1940's, fin densities were limited to about 600 to 700 fins per meter(fpm) because of manufacturing procedure. Today new manufacturing techniques allow production of tubes with fin densities ranging from 750 to 1600 fpm. The integral-fin tubes investigated in this paper are nominally 19 mm diameter. Eight tubes have been used with trapezodially shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. For comparison, tests are made using a plain tube having the same inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. Betty and Katz's theoretical modelis is used to predict the R-11 condensation coefficient on horizontal integral-fin tubes having 748, 1024 and 1299 fpm. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken at steady state. The observed heat transfer enhancement for the finned and grooved tubes significantly exceeded that to be expected on grounds of increased area. For the eight fin tubes and one plain tube tested, the best performance has been obtained with a tube having a fin density of 1299 fpm, and a fin bight of 1.2mm and 30 grooves.

  • PDF

Numerical Analysis of A Compressor Type of Dehumidifier : (II) Heat Transfer (압축식 제습기에 대한 수치해석 연구 : (II) 열전달)

  • Duong, Xuan Quang;Nguyen, Huy Hai;Kim, Kyu-Mok;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.92-99
    • /
    • 2018
  • A numerical analysis of a compressor dehumidifier has been conducted focusing on the air side heat transfer, which is a part of a series research on the dehumidifier. The moving reference frame was applied to the fan modeling, and the porous model was used for the evaporator and condenser modeling. Curve fitting obtained the inertial and viscous resistances parameters to the results of the physical model of the unit cell with actual shape of a fin tube. The porous model was validated within a reasonable computation time for the range of practical inlet velocity of a dehumidifier. A parametric study has been conducted for fin number, fan speed (i.e., air flow rate), and evaporator/condenser tube arrangement. ANOVA analysis showed the dependency of each parameter on the velocity and temperature uniformity, which are desirable for high performance of the dehumidifier.

Performance Analysis of Integral Receiver/Dryer Condenser for Automobile (자동차용 리시버/건조기 일체형 응축기의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2007
  • The important problems from the point of view of preventing global warming are to save the power consumption of automotive air-conditioning systems and reduce the refrigerant amount filled. To achieve such requirements, integral receiver/dryer (R/D) condensers were developed recently. Typical integral R/D condensers have extra headers that play the role of R/D. Except an extra header and somewhat complex tube array resulting from the extra header, the most integral R/D condensers have almost the same specification that tube has multi channels, fin has louvers, flow in tube is parallel, etc. When integral condensers are applied, it is known that the refrigerating effect increases, resulting from the increase of subcooling degree in condenser, and the refrigerant amount used saves. In spite of several merits, integral condensers have not been applied a lot. That is why there is an uncertainty in performance, using integral condensers. The objective of this study is to theoretically optimize the tube array in an integral R/D condenser that is really being applied to some vehicles. The tube array has a great effect on the performance of the integral condenser as well as common ones. Through computer simulation, we could see that the tube array, 14-6-3-5-3-4, in the same condenser was the best, comparing heat release rate, pressure drop, etc. to the real array, 17-5-3-3-2-5. It should be noted that the optimization is based on the condenser performance only.