• Title/Summary/Keyword: Concurrency Control

Search Result 220, Processing Time 0.043 seconds

An Optimistic Concurrency Control supports Update Operations for Mobile Transactions (이동 환경에서 갱신 연산을 지원하는 낙관적 동시성 제어 방법)

  • 김치연;배석찬
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1153-1160
    • /
    • 2002
  • So far, the main applications of mobile client are querying data. However, we need a new mechanism to update data at a mobile client as mobile systems are advanced and extended. So, we present a optimistic concurrency control to schedule mobile transactions may include update operations.'rho read-only transactions can be terminated without sending information to a server, and update transactions are terminated by validating at a server. In our method, we can reduce the additional aborts by using a timestamp ordering and serialization graph test mechanism rather than using only conflict information between concurrent transactions.

A Study on the Replication Consistency Model for the Mapping System on the Client-Sewer Environment (클라이언트-서버 환경의 매핑 시스템 개발을 위한 복제 일관성 모델에 관한 연구)

  • Lee, Byung-Wook;Park, Hong-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.193-205
    • /
    • 1997
  • It is required for multi-users to share massive mapping data effectively that distributed data model in the Client-Server environment is developed for the replication consistency. The existing model is not effective to the long transaction just like a mapping system, since it does not account lot consistency between GUI screen and database replications even though it emphasizes on the replication consistency. The performance of concurrency control is very important for those long transactions, especially the mapping systems. This model is to support consistency between GUI screen and replicas using display locks. It suggests consistency model improving process performance by modifying memory consistency model and optimistic concurrency control for mapping data's characteristics.

  • PDF

CoDraw : Design and Implementatiion of a Flexible CSCW System on the Web using Autonmous Object (CoDraw : 자율 객체를 이용한 웹에서의 유연성있는 CSCW 시스템 설계 및 구현)

  • Choe, Jong-Myeong;Kim, Hyeong-Jin;Choe, Jae-Yeong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.5
    • /
    • pp.574-582
    • /
    • 1999
  • Computer Supported Cooperative Work(CSCW) systems for cooperaton in distributed computing environment are used in many fields such as on-line approval, co-authoring, co-decision making, and so on. There have been many researches on co-drawing tools of the CSCW system, because they can be used in communication, co-design, and education. However, the existing tools are not flexible in system architecture and concurrency control. In this paper, we present "autonomous object," which includes concurrency control policy and information about its view. And we developed a new CSCW system with flexible system architecture.

Optimistic Concurrency Control with Update Transaction First for Broadcast Environment : OCC/UTF (방송환경에서 갱신 거래 우선 낙관적 동시성 제어 기법)

  • Lee, Uk-Hyeon;Hwang, Bu-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.185-194
    • /
    • 2002
  • Most of mobile computing systems allow mostly read-only transactions from mobile clients for retrieving various types of Information such as stock data, traffic information and news updates. Since previous concurrence control protocols, however, do not consider such a particular characteristics, the performance degradation occurs when previous schemes are applied to the broadcast environment. In this paper, we propose OCC/UTF(Optimistic Concurrence Control with Update Transaction First) that is most appropriate for broadcast environment. OCC/UTF lets a query transaction, that has already read the data item which was invalidated by update transaction, read again the same data item without the abort of the query transaction due to non-serializability. Therefore, serializable order is maintained and the query transaction is committed safely regardless of commitment of update transactions. In OCC/UTF, Clients need not require server to commit their query transactions. Because of broadcasting the validation reports including values updated recently to clients, it reduces the overhead of requesting recent values from the server and the server need not also re-broadcast the newest values. As a result, OCC/UTF makes full use of the asymmetric bandwidth. It can also improve transaction throughput by increasing the commit ratio of query transactions as much as possible.

Slices Method of Petri Nets Using the Transitive Matrix for Scheduling Analysis in FMS (유연생산 시스템 스케쥴링 분석을 위한 추이적 행렬을 이용한 패트리 넷의 분할)

  • Song, You-Jin;Kim, Jong-Wuk;Lee, Jong-Kun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.292-298
    • /
    • 2002
  • We focus on the slicing off some sub-nets using the transitive matrix. Control flows in the Petri nets is done based on the token flows. One control f]ow explains the independent tokens status and if the token-in divides into several tokens after firing a transition then the control flow divides to several flows, as well. Accordingly, we define that the basic unit of concur-rency (short BUC) is a set of the executed control flows based on the behavioral properties in the net. The BUC is S-invariant which has one control flow. We show the usefulness of transitive matrix to slice off some subnets from the original net based on BUC-through on an example.

Caching and Concurrency Control in a Mobile Client/Sever Computing Environment (이동 클라이언트/서버 컴퓨팅환경에서의 캐싱 및 동시성 제어)

  • Lee, Sang-Geun;Hwang, Jong-Seon;Lee, Won-Gyu;Yu, Heon-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.974-987
    • /
    • 1999
  • 이동 컴퓨팅 환경에서 자주 접근하는 데이터에 대한 캐싱은 무선 채널의 좁은 대역폭에서 경쟁을 줄일 수 있는 유용한 기술이다. 그러나, 트랜잭션 캐시 일관성을 지원하는 전통적인 클라이언트/서버 전략은 클라이언트와 서버간에 많은 양의 통신을 필요로 하기 때문에 이동 클라이언트/서버 컴퓨팅 환경에서는 적절하지 않다. 본 논문에서는 브로드캐스트-기반 캐시 무효화 정책을 사용하면서 트랜잭션 캐시 일관성을 지원하는 OCC-UTS (Optimistic Concurrency Control with Update TimeStamp) 프로토콜을 제안한다. 접근한 데이터에 대한 일관성 검사 및 완료 프로토콜은 캐시 무효화 과정의 내부 과정으로 완전 분산 형태로 효율적으로 구현되며, 일관성 체크의 대부분이 이동 클라이언트에서 수행된다. 또한, 분석 모델에 기반한 성능 비교를 통해, 본 논문에서 제안하는 OCC-UTS 프로토콜이 다른 경쟁 프로토콜보다 높은 트랜잭션 처리율을 얻으며, 데이터 항목을 자주 접근하면 할수록 지역 캐시를 사용하는 OCC-UTS 프로토콜이 더 효율적임을 보인다. 이동 클라이언트의 접속 단절에 대해서는 무효화 브로드캐스트 윈도우를 크게 하여 접속 단절에 적절히 대처할 수 있다.Abstract In a mobile computing environment, caching of frequently accessed data has been shown to be a useful technique for reducing contention on the narrow bandwidth of the wireless channels. However, the traditional client/server strategies for supporting transactional cache consistency that require extensive communications between a client and a server are not appropriate in a mobile client/server computing environment. In this paper, we propose a new protocol, called OCC-UTS (Optimisitic Concurrency Control with Update TimeStamp), to support transactional cache consistency in a mobile client/server computing environment by utilizing the broadcast-based solutions for the problem of invalidating caches. The consistency check on accessed data and the commitment protocol are implemented in a truly distributed fashion as an integral part of cache invalidation process, with most burden of consistency check being downloaded to mobile clients. Also, our experiments based on an analytical model substantiate the basic idea and study the performance characteristics. Experimental results show that OCC-UTS protocol without local cache outperforms other competitor protocol, and the more frequent a mobile client accesses data items the more efficient OCC-UTS protocol with local cache is. With respect to disconnection, the tolerance to disconnection is improved if the invalidation broadcast window size is extended.

Design of an Efficient Concurrency Control Algorithms for Real-time Database Systems (실시간 데이터베이스 시스템을 위한 효율적인 병행실행제어 알고리즘 설계)

  • Lee Seok-Jae;Park Sae-Mi;Kang Tae-ho;Yoo Jae-Soo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.67-84
    • /
    • 2004
  • Real-time database systems (RTDBS) are database systems whose transactions are associated with timing constraints such as deadlines. Therefore transaction needs to be completed by a certain deadline. Besides meeting timing constraints, a RTDBS needs to observe data consistency constraints as well. That is to say, unlike a conventional database system, whose main objective is to provide fast average response time, RTDBS may be evaluated based on how often transactions miss their deadline, the average lateness or tardiness of late transactions, the cost incurred in transactions missing their deadlines. Therefore, in RTDBS, transactions should be scheduled according to their criticalness and tightness of their deadlines, even If this means sacrificing fairness and system throughput, And It always must guarantee preceding process of the transaction with the higher priority. In this paper, we propose an efficient real-time scheduling algorithm (Multi-level EFDF) that alleviates problems of the existing real-time scheduling algorithms, a real-time concurrency control algorithm(2PL-FT) for firm and soft real-time transactions. And we compare the proposed 2PL F[ with AVCC in terms of the restarting ratio and the deadline missing ratio of transactions. We show through experiments that our algorithms achieve good performance over the other existing methods proposed earlier.

  • PDF

A Distributed Real-Time Concurrency Control Scheme using Transaction the Rise of Priority (트랜잭션 우선 순위 상승을 이용한 분산 실시간 병행수행제어 기법)

  • Lee, Jong-Sul;Shin, Jae-Ryong;Cho, Ki-Hyung;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.484-493
    • /
    • 2001
  • As real-time database systems are extended to the distributed computing environment, the need to apply the existing real-time concurrency control schemes to the distributed computing environment has been made. In this paper we propose an efficient concurrency control scheme for distributed real-time database system. Our proposed scheme guarantees a transaction to commit at its maximum, reduces the restart of a transaction that is on the prepared commit phase, and minimizes the time of the lock holding. This is because it raises the priority of the transaction that is on the prepared commit phase in the distributed real-time computing environment. In addition, it reduces the waiting time of a transaction that owns borrowed data and improves the performance of the system, as a result of lending the data that the transaction with the raised priority holds. We compare the proposed scheme with DO2PL_PA(Distributed Optimistic Two-Phase Locking) and MIRROR(Managing Isolation in Replicated Real-time Object Repositories) protocol in terms of the arrival rate of transactions, the size of transactions, the write probability of transactions, and the replication degree of data in a firm-deadline real-time database system based on two-phase commit protocol. It is shown through the performance evaluation that our scheme outperforms the existing schemes.

  • PDF

A TMO Supporting Library and a BCC Scheduler for the Microscale Real-time OS, TMO-eCos) (초경량 실시간 운영체제 TMO-eCos를 위한 TMO 지원 라이브러리 및 BCC 스케줄러)

  • Ju, Hyun-Tae;Kim, Jung-Guk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.505-509
    • /
    • 2009
  • It is the most important object of real-time computing to make real-time tasks keep their given time conditions. In this paper, we implemented BCC(Basic Concurrency Constraint) scheduler which is provided as an essential element of TMO(Time-triggered Message-triggered Object) model, and TMO Supporting Library that supports object-oriented design for TMO. BCC scheduler is a means to design timeliness-guaranteed computing, and it predicts the start of SpMs first, and then it makes the execution of SvMs deferred when it is predicted that any SpM begins to run currently. In this way, BCC is able to prevent collisions between SpM and SvM, and it gives higher priority to SpMs than SvMs.

Phantom Protection Method for Multi-dimensional Index Structures

  • Lee, Seok-Jae;Song, Seok-Il;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.6-17
    • /
    • 2007
  • Emerging modem database applications require multi-dimensional index structures to provide high performance for data retrieval. In order for a multi-dimensional index structure to be integrated into a commercial database system, efficient techniques that provide transactional access to data through this index structure are necessary. The techniques must support all degrees of isolation offered by the database system. Especially degree 3 isolation, called "no phantom read," protects search ranges from concurrent insertions and the rollbacks of deletions. In this paper, we propose a new phantom protection method for multi-dimensional index structures that uses a multi-level grid technique. The proposed mechanism is independent of the type of the multi-dimensional index structure, i.e., it can be applied to all types of index structures such as tree-based, file-based, and hash-based index structures. In addition, it has a low development cost and achieves high concurrency with a low lock overhead. It is shown through various experiments that the proposed method outperforms existing phantom protection methods for multi-dimensional index structures.