• Title/Summary/Keyword: Concrete-Filled Effect

Search Result 275, Processing Time 0.033 seconds

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

Behavior of Concrete-Filled and Tied Steel Tubular Arch Girder (콘크리트 충전 타이드 아치형 강재 합성거더의 선형 거동 분석)

  • Lee, Hak;Park, Ho;Lee, Eun-Ho;Kim, Jung-Ho;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.688-693
    • /
    • 2007
  • Nowadays various studies related with superstructure of bridges are developed and they pursuit more effective section of bridges superstructure, material and economical application of composite materials. CFT structure(Concrete Filled Steel Tubular Structure) is developed type of composite structure that concrete is filled with steel box, and the deformation of the member, stiffness and internal force will be improved by confinement effect of steel box and concrete. This paper introduces new type of girder, CFTA girder( Concrete- Filled and Tied Steel Tubular Arch Girder) which is combined with traditional CFT structure,arch effect and prestress through carrying out the structural analysis by computer programs. The computer programs which is used are ABAQCS and MIDAS, and the 12.2m girder which is applied same load and prestresses is analyzed and compared the results respectively.

  • PDF

Experimental behavior of circular flyash-concrete-filled steel tubular stub columns

  • Zhang, Yang;Fu, Guang-Yuan;Yu, Chen-Jiang;Chen, Bing;Zhao, She-Xu;Li, Si-Ping
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.821-835
    • /
    • 2016
  • The paper presents an experimental study of the structural behavior of circular flyash-concrete-filled steel tubular stub columns under axial compressive loads. In this study, 90% and 100% by weight of the cement in the concrete core was replaced with flyash. Twenty-seven specimens were tested to study the influence of flyash content, wall thickness of the steel tube, and curing age on the ultimate capacity and confinement effect. The experimental results were compared with the design values calculated using AISC-LRFD (1999), ACI (1999), AIJ (1997) and Eurocode 4 (1994). From the experimental study, it was determined that the confinement effect of circular steel tubes filled with high content flyash concrete was better than that of specimens filled with ordinary Portland cement concrete. The 5.88-mm-thick steel tube filled with 100% flyash concrete was equivalent in strength to a steel tube filled with C30 concrete at 28 days.

A study on the Properties for Structural Behavior of High-Performance Concrete Filled Square Steel Tube Columns -The Behavior Properties by Loading Conditions- (고성능 콘크리트를 충전한 각형강관 기둥의 구조적 거동 특성에 관한 연구 -재하조건별 거동특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.177-186
    • /
    • 1998
  • The concrete filled steel tubular column have to superior in compressive load carrying capacity, compared with same section typed hollow steel tube column, and have many excellent structural properties, such as stiffness improvement by filled concrete, improvement of ductility by reinforced effect of local buckling, and the like. However, it has not clear the effect of interaction between steel tube and filled concrete, stress portion ratio and fracture mechanism of concrete. This study investigated to structural properties for high strength concrete filled steel tube column by loading conditions through a series of experiments. Especially, this study investigated the properties of structural behaviors for concrete filled steel tube column stress ratio by loading conditions and failure mechanism of filled concrete.

  • PDF

Non-linear Behavior of New Type Girder Filled by High-Strength Concrete (신형식 거더의 고강도 콘크리트 적용 시 비선형 거동 분석)

  • Choi, Sung-Woo;Lee, Hak;Kong, Jung-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.217-220
    • /
    • 2008
  • Recently, many studies about a high-strength concrete and composite structures are being progressed to get the more economic and stable result in the construction of structure all over the world. One of those studies is about CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure which is filled with a concrete and improve the stiffness and strength of the structure by the confinement effect of fillers to maximize the efficiency of structure and economic. In this study, non-linear behavior of CFTA girders filled with a general concrete and the high-strength concrete respectively were analyzed by using ABAQUS 6.5-1 and results were compared.

  • PDF

Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)

  • Wang, Qin-Ting;Chang, Xu
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2013
  • This paper presents a numerical study of axially loaded concrete-filled steel tubular columns with "T" shaped cross section (CFTTS) based on the ABAQUS standard solver. Two types of columns with "T" shaped cross section, the common concrete-filled steel tubular columns with "T" shaped cross section (CCFTTS) and the double concrete-filled steel tubular columns with "T" shaped cross section (DCFTTS), are discussed. The failure modes, confining effects and load-displacement curves are analyzed. The numerical results indicate that both have the similar failure mode that the steel tubes are only outward buckling on all columns' faces. It is found that DCFTTS columns have higher axial capacities than CCFTTS ones duo to the steel tube of DCFTTS columns can plays more significant confining effect on concrete. A parametric study, including influence of tube thickness, concrete strength and friction coefficient of tube-concrete interface on the axial capacities is also carried out. Simplified formulae were also proposed based on this study.

Concrete filled double skin tubular members subjected to bending

  • Uenaka, Kojiro;Kitoh, Hiroaki;Sonoda, Keiichiro
    • Steel and Composite Structures
    • /
    • v.8 no.4
    • /
    • pp.297-312
    • /
    • 2008
  • A concrete filled double skin tubular (called CFDST in abbreviation) member consists of two concentric circular steel tubes and filled concrete between them. Purpose of this study is to investigate their bending characteristics experimentally. The two test parameters of the tubes considered were an inner-to-outer diameter ratio and a thickness-diameter ratio. As a result, their observed failure modes were controlled by tensile cracking or local buckling of the outer tube. Discussion is focused on the confinement effect on the filled concrete due to the both tubes and also the influence of the inner-to-outer diameter ratios on their deformability and load carrying capacity.

Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber

  • Chen, Juan;Liu, Xuan;Liu, Hongwei;Zeng, Lei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • This paper presents an experimental work for short circular steel tube columns filled with normal concrete (NAC), recycled aggregate concrete (RAC), and RAC with silica fume and steel fiber. Ten specimens were tested under axial compression to research the effect of silica fume and steel fiber volume percentage on the behavior of recycled aggregate concrete-filled steel tube columns (RACFST). The failure modes, ultimate loads and axial load- strain relationships are presented. The test results indicate that silica fume and steel fiber would not change the failure mode of the RACFST column, but can increase the mechanical performances of the RACFST column because of the filling effect and pozzolanic action of silica fume and the confinement effect of steel fiber. The ultimate load, ductility and energy dissipation capacity of RACFST columns can exceed that of corresponding natural aggregate concrete-filled steel tube (NACFST) column. Design formulas EC4 for the load capacity NACFST and RACFST columns are proposed, and the predictions agree well with the experimental results from this study.

The Confinement Effect on the Shear Stiffness of Inner Shear Connections in Concrete-filled Steel-Concrete Composite Girder (콘크리트로 충지된 강.콘크리트 합성거더의 구속효과가 내부 전단연결부 강도에 미치는 영향)

  • Lee, Sang-Yoon;Kim, Jung-Ho;Lee, Seung-Yong;Park, Kyung-Hoon;Lee, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.229-232
    • /
    • 2008
  • Researches on the steel-concrete composite girder filled with plain concrete have been being actively performed on the grounds that this type of girder has constructional, structural and aesthetical benefits. As a part of studies on the characteristics of inner shear connections in the concrete-filled steel-concrete composite girder with plain concrete, the confinement effect on the stiffness of inner shear connections was examined in this study. In the case of concrete-filled steel-concrete composite girder, it can be expected that the stiffness of shear connections may be increased in comparison with the case not confined. Therefore, the experimental studies were performed with the confinement effect as a parameter, and the results are discussed in this paper.

  • PDF

Flexural Strength Design Equation of Concrete Filled Steel Tube(CFT) Column Reinforced by Carbon Fiber Sheet (탄소섬유쉬트로 보강한 콘크리트 충전강관(CFT) 기둥의 휨내력식)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.29-36
    • /
    • 2008
  • The TR-CFT(Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the state of local buckling at the critical section by wrapping the CFT columns with a carbon fiber sheet. In this study, an equation to determine the flexural strength of TR-CFT is proposed. The ACI-318 code, in which the contribution of the confining effect in the concrete filled steel tube is not appropriately accounted for, may be conservative. Therefore, flexural strength design equations for CFT columns and TR-CFT columns are proposed based on the concrete strain-stress curve, which contributes to the confining effect. Finally, the predicted results for the CFT and TR-CFT columns are shown to be in good agreement with actual test results.