• 제목/요약/키워드: Concrete temperature

검색결과 2,493건 처리시간 0.026초

Numerical analysis for behavior of outer concrete tank in emergency LNG spillage

  • Lee, Jeong Su;Park, Chan Kyu;Lee, Yun;Kim, Ji-Hoon;Kwon, Seung Hee
    • Computers and Concrete
    • /
    • 제14권4호
    • /
    • pp.369-385
    • /
    • 2014
  • In the existing method for analyzing the liquid tightness of the outer concrete tank in an emergency LNG spillage, the temperature variation over time inside the tank, and the concrete properties dependent on temperature and internal moisture content, have not been taken into account. In this study, the analyses for a typical LNG concrete tank subjected to thermal load due to spillage were performed with three different cases: the existing method was adopted in the first case, the transient temperature variation was considered in the second, and the temperature-moisture content dependent concrete properties were taken into account as well as the transient states of temperature in the third. The analysis results for deformation, compressive zone size, cracking, and stress of reinforcements were compared, and a discussion on the difference between the results obtained from the different analysis cases was made.

수중온도가 수중불분리성 콘크리트의 초기상도에 미치는 영향에 관한 실험적 연구 (Water temperature effects on the early strength characteristics of antiwashout underwater concrete)

  • 이승훈;정재홍;안태송;원종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.324-329
    • /
    • 1998
  • Recently the use of the underwater concrete with the antiwashout admixture is increased considerably. When we intend to apply it to the field, we must consider the water temperature effect. In this study, we investigate the properties of setting time, early strength, hydration temperature history and core strength with the antiwashout underwater concrete in the water temperature 8$^{\circ}C$, 14$^{\circ}C$ and 22$^{\circ}C$ respectively. As a result of experiment, as the water temperature is decreasing, setting time is delayed twice of three times and early strength is lower from 10% to 50%. Therefore to compensate the decrease of the early strength, we used the accelerator and investigated the concrete properties.

  • PDF

Confinement effectiveness of CFRP strengthened concrete cylinders subjected to high temperatures

  • Raoof, Saad M.;Ibraheem, Omer F.;Tais, Abdulla S.
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.529-535
    • /
    • 2020
  • The current study investigated experimentally the effectiveness of Carbon Fiber Reinforced Polymer (CFRP) in confining concrete cylinders after being subjected to high temperature. Parameters examined were: (a) the exposing temperatures (20, 100, 200, 400 600 and 700℃) and (b) the number of CFRP layers (1 and 3 layers). A uniaxial compressive testing was carried out on 36 concrete cylinders with dimensions of 150 mm×300 mm. The results obtained show that the compressive strength reduced with the increased of temperature compared to that measured at 20℃. In particular, the reduction in the compressive strength was more observed when the temperature exceeded 400℃. Further, the concrete cylinders confined with one and three layers of CFRP significantly increased the compressive strength compared to the counterpart unconfined specimen tested at the same temperature. Also, the average percentages of the increase in the compressive strength were approximately 112% and 158% when applying 1 and 3 layers of CFRP, respectively, compared to the counterpart unstrengthened specimen tested at the same temperature.

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • 한국건축시공학회지
    • /
    • 제14권3호
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

감온성 안료의 혼입에 따른 온도반응 색변환 콘크리트의 기초물성에 관한 실험적 연구 (Experimental Study on the Basic Properties of Concrete Composition Mixed with Pigments Having been Color Changed by the Temperature)

  • 이주헌;박용규;전인기;윤기원
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.149-152
    • /
    • 2009
  • Recent trends show an increased usage of 'colored concrete', a inorganic pigmented concrete mix, especially in smalll to large scale buildings. However, due to lack of varieties, current usage of colored concrete is limited to the one or two simple color of the time in construction work. so, this study is to investigate the properties of concrete adding temperature reactive pigment. The results of the experiment, the basic material characteristics of concrete such as of compressive strength and slump is affected by the amount rate of adding the temperature reactive pigment. And, it showed the excellent color expression and changing with temperature reactive pigment.

  • PDF

고온에 노출된 철근콘크리트 기둥의 거동 해석 (Analysis of RC Columns under High Temperature)

  • 이지웅;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.625-628
    • /
    • 2003
  • This paper presents the behaviors of reinforced concrete columns under high temperature. When columns are exposed high temperature, temperature distribution of a section becomes nonlinear and it is calculated by using finite difference method(F.D.M). The interaction curves show the strength of columns at various exposure times. The strength of columns decreases according to the increase of the exposure time and the decrease of concrete cover.

  • PDF

외부구속을 받는 매스콘크리트 구조물의 수화열 해석 (Numerical Analysis of Temperature and Stress Distribution in Mass Concrete Structure with External Restriction)

  • 김은겸;조선규;신치범;박영진;서동기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.345-348
    • /
    • 1999
  • Since the cement-water reaction is exothermic by nature, the temperature rise within a large concrete mass. Significant tensile stresses may develop from the volumn change associated with the increase and decrease of the temperature with the mass concrete. These thermal stresses will cause temperature-related cracking in mass concrete structures. These typical type of mass concrete include mat foundation, bridge piers, thich walls, box type walls, tunnel linings, etc. Crack control methods can be considered at such stages as designing, selecting the materials, and detailing the construction method. In this paper, the effect of placing of crack control joint or construction joint was analysed by a three dimensional finite element method. As a result, using this method, crack control can be easily performed for structures such as wall-type structures.

  • PDF

고강도 콘크리트의 단열온도상승에 관한 실험적 연구 (The Hydration Heat of High Strength Concrete)

  • 노재호;한정호;조일호;박연동;정재동;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.209-214
    • /
    • 1994
  • The heat of hydration of cement causes the intemal temperature rise at early age, particulay in massive concrete structures. As the results of the temperature rise and restraint condition, the thermal stress amy induce cracks in concrete. The prediction of the thermal stress is very important in design and consturction slages in order to control the cracks in mass concrete. In this study, the temperature rise of high strength concrete due to the heat of hydration is investigated. Test variables are type and content of binder. As the results, the temperature rise is imcreased with increasing cement content. However, the increament is decreased in higher cement comtnet range. Fly ash is effictive in the reduction of hydration heat.

  • PDF

Damage Mechanism of Asphalt Concrete under Low Temperatures

  • Kim, Kwang-Woo;Yeon, Kyu-Seok;Park, Je-Seon
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.200-204
    • /
    • 1994
  • Low temperature associated damage mechanism is not well known for asphalt concrete. Many studies have related the thermal cracking of pavement in the roadway in cold region with overall shrinkage of the pavement surface under assumption of homogeneous material. This study, however, was intiated based on the assumption that thermal incompatibility of materials (heterogeneous) in asphalt concrete mixture would be the primary cause of the damages. Acoustic emission technique and microscopic obsevation were employed to evaluate damage mechanism of asphalt concrete due to low temperature. The first method showed the sufficient evidence that asphalt concrete could be damaged by lowered temperature only. The second method showed that the damage by temperature resulted in micro-cracks at the interface between asphalt matrix and aggregate particle. It was concluded that these damage mechanisms were the primary cause of major thermal cracking of asphalt pavement in cold region.

  • PDF

매스 콘크리트 구조물의 파이프 쿨링에 의한 냉각효과 (The Cooling Effect of Pipe Cooling in Mass Concrete Structures)

  • 오병환;신경준;차수원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.299-304
    • /
    • 1999
  • Cracking of concrete is one of the main issues of structural design next to ensuring the load-bearing capacity. Thermal cracking is a recurring concern in the production of concrete structures in particular when large, massive structures are considered. Thremal stresses arise from the differential temperature distribution either within s sturcture or between newly cast sectons and adjoining older parts. There are many different methods of reducing thermal stresses. A method often used for reducing temperature within a structure, is to cool the inner core with embedded cooling pipes. In this study, finite element method is employed for thermal analysis of concrete structures. To calculate water temperature variation in pipe, the conservation of thermal energy in internal flow was adopted. The cooling effect of pipe cooling is studied with several factors like convective coefficient, water temperature, concrete heat characteristics

  • PDF