• 제목/요약/키워드: Concrete temperature

검색결과 2,484건 처리시간 0.023초

A simplified approach for fire-resistance design of steel-concrete composite beams

  • Li, Guo-Qiang;Wang, Wei-Yong
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.295-312
    • /
    • 2013
  • In this paper, a simplified approach based on critical temperature for fire resistance design of steel-concrete composite beams is proposed. The method for determining the critical temperature and fire protection of the composite beams is developed on the basis of load-bearing limit state method employed in current Chinese Technical Code for Fire safety of Steel Structure in Buildings. Parameters affecting the critical temperature of the composite beams are analysed. The results show that at a definite load level, section shape of steel beams, material properties, effective width of concrete slab and concrete property model have little influence on the critical temperature of composite beams. However, the fire duration and depth of concrete slab have significant influence on the critical temperature. The critical temperatures for commonly used composite beams, at various depth of concrete and fire duration, are given to provide a reference for engineers. The validity of the practical approach for predicting the critical temperature of the composite beams is conducted by comparing the prediction of a composite beam with the results from some fire design codes and full scale fire resistance tests on the composite beam.

열화상카메라 기반 콘크리트 온도 측정을 위한 이미지 프로세싱 적용 기초 연구 (Preliminary Study on Image Processing Method for Concrete Temperature Monitoring using Thermal Imaging Camera)

  • 문성환;김태훈;조규만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.206-207
    • /
    • 2020
  • Accurate estimation of concrete strength development at early ages is a critical factor to secure structural stability as well as to speed up the construction process. The temperature generated from the heat of hydration is considered as a key parameter in predicting the early age strength. Conventionally, concrete temperature has been measured by temperature sensors installed inside concrete. However, considering the measurement on building structures with multiple floors, this method requires reinstallation and repositioning of hardware such as sensors, data loggers and routers for data transfer. This makes the temperature monitoring work cumbersome and inefficient. Concrete temperature monitoring by using thermal remote sensing can be an effective alternative to supplement those shortcomings. In this study, image processing was carried out through K-means clustering technique, which is a unsupervised learning method, and the classification results were analyzed accordingly. In the future, research will be conducted on how to automatically recognize concrete among various objects by using deep learning techniques.

  • PDF

초지연제의 응결시간차 공법을 이용한 기초 매트 콘크리트의 수화열 저감 시공 (Execution of Mass Concrete for Mat Foundation Using Setting Time Difference with Super Retarding Agent for Reducing Hydration Heat)

  • 전충근;윤치환;송승헌;신동안;오선교;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.144-147
    • /
    • 2004
  • In this paper, field application of mass concreting using super retarding agent(SRA) are discussed based on setting. time difference with SRA in big discount market in Chongju. Mechanical and physical properties of .concrete are investigated. Temperature history of concrete is also measured. Slump and air content meet the requirement of target value. Compressive strength of concrete exceeded the nominal strength with 24MPa. Compressive strength of SRA concrete is higher than that of plain concrete by about $3\~4\%$. For temperature history, peak temperature of concrete at middle section at top concrete layer reached $49.6^{\circ}C$ within 24hours, and at bottom concrete layer, $54.6^{\circ}C$ within 42hours. Based on the naked eye's observation, no crack was found at mass concrete.

  • PDF

Effects of tensile softening on the cracking resistance of FRP reinforced concrete under thermal loads

  • Panedpojaman, Pattamad;Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.447-461
    • /
    • 2010
  • Fiber reinforced polymer (FRP) bars have been widely used as reinforcement for concrete structures. However, under elevated temperatures, the difference between the transverse coefficients of thermal expansion of FRP rebars and concrete may cause the splitting cracks of the concrete cover. As a result, the bonding of FRP-reinforced concrete may not sustain its function to transfer load between the FRP rebar and the surrounding concrete. The current study investigates the cracking resistance of FRP reinforced concrete against the thermal expansion based on a mechanical model that accounts for the tensile softening behavior of concrete. To evaluate the efficacy of the proposed model, the critical temperature increments at which the splitting failure of the concrete cover occurs and the internal crack radii estimated are compared with the results obtained from the previous studies. Simplified equations for estimating the critical temperature increments and the minimum concrete cover required to prevent concrete splitting failure for a designated temperature increment are also derived for design purpose.

적산온도에 의한 FRC 기층의 강도발현 성능 분석 (Performance Analysis of Strength Development of FRC Base Depending on Maturity)

  • 최성용;박영환;정우태
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2016
  • PURPOSES : In this study, we analyzed the compressive strength characteristics of lean base concrete in relation to changes in the outdoor temperature after analyzing the cold and hot weather temperature standards and calculated the minimum and maximum temperatures when pouring concrete. We examined the rate of strength development of lean base concrete in relation to the temperature change and derived an appropriate analysis formula for FRC base structures by assigning the accumulated strength data and existing maturity formula. METHODS : We measured the strength changes at three curing temperatures (5, 20, and $35^{\circ}C$) by curing the concrete in a temperature range that covered the lowest temperature of the cold period, $5^{\circ}C$, to the highest temperature of the hot period, $35^{\circ}C$. We assigned the general lean concrete and FRC as test variables. A strength test was planned to measure the strength after 3, 5, 7, 14, and 28 days. RESULTS : According to the results of compressive strength tests of plain concrete and FRC in relation to curing temperature, the plain concrete had a compressive strength greater than 5 MPa at all curing temperatures on day 5 and satisfied the lean concrete standard. In the case of FRC, because the initial strength was substantially reduced as a result of a 30% substitution of fly ash, it did not satisfy the strength standard of 5 MPa when it was cured at $5^{\circ}C$ on day 7. In addition, because the fly ash in the FRC caused a Pozzolanic reaction with the progress into late age, the amount of strength development increased. In the case of a curing temperature of $20^{\circ}C$, the FRC strength was about 66% on day 3 compared with the plain concrete, but it is increased to about 77% on day 28. In the case of a curing temperature of $35^{\circ}C$, the FRC strength development rate was about 63% on day 3 compared with the plain concrete, but it increased to about 88% on day 28. CONCLUSIONS : We derived a strength analysis formula using the maturity temperatures with all the strength data and presented the point in time when it reached the base concrete standard, which was 5 MPa for each air temperature. We believe that our findings could be utilized as a reference in the construction of base concrete for a site during a cold or hot weather period.

Bond behavior of PP fiber-reinforced cinder concrete after fire exposure

  • Cai, Bin;Wu, Ansheng;Fu, Feng
    • Computers and Concrete
    • /
    • 제26권2호
    • /
    • pp.115-125
    • /
    • 2020
  • To reduce the damage of concrete in fire, a new type of lightweight cinder aggregate concrete was developed due to the excellent fire resistance of cinder. To further enhance its fire resistance, Polypropylene (PP) Fibers which can enhance the fire resistance of concrete were also used in this type of concrete. However, the bond behavior of this new type of concrete after fire exposure is still unknown. To investigate its bond behavior, 185 specimens were heated up to 22, 200, 400, 600 or 800℃ for 2 h duration respectively, which is followed by subsequent compressive and tensile tests at room temperature. The concrete-rebar bond strength of C30 PP fiber-reinforced cinder concrete was subsequently investigated through pull-out tests after fire exposure. The microstructures of the PP fiber-reinforced cinder concrete and the status of the PP fibre at different temperature were inspected using an advanced scanning electron microscopy, aiming to understand the mechanism of the bonding deterioration under high temperature. The effects of rebar diameter and bond length on the bond strength of PP fiber-reinforced cinder concrete were investigated based on the test results. The bond-slip relation of PP fiber-reinforced cinder concrete after exposure at different temperature was derived based on the test results.

매스콘크리트 구조체의 주변환경을 고려한 온도이력 해석 (Analysis of Temperature Rise History Considering Construction Environments in Mass Concrete Structural Element)

  • 이장화;변근주
    • 콘크리트학회지
    • /
    • 제8권4호
    • /
    • pp.191-199
    • /
    • 1996
  • 매스콘크리트 시공시 콘크리트의온도가 급격히 변화하면 콘크리트에는 균열이 발생하게 된다. 매스콘크리트를 타설한 후에는 구조물의 주변환경조건이 콘크리트의 온도를 변화시키게 된다. 그러나 아직도 주변환경조건을 고려하여 콘크리트의 온도이력을 엄밀하게 해석할 수 있는 해석기법이 개발되지 않은 상황이다. 본 연구에서는 대기온도, 양생온도, 거푸집재료, 거푸집의 존치 및 제거, 추가양생 등 주변환경조건이 매스콘크리트 온도이력에 미치는 영향을 정량적으로 해석하기 위하여 유한요소정식와에 열전달계수, 주변환경조건 및 거푸집조건을 도입하였고 이를 해석할 수 있는 알고리즘과 해석프로그램을 개발하였다. 본 연구의 수치모형 해석값을 모형실험값, 타연구 모형실험값 및 기존의 범용프로그램에 의한 해석값과 비교한 결과로부터 본 연구의 온도해석이론의 타당성 및 정확도를 분석하였다.

실물대시험에서의 양생방법 차이에 따른 한중콘크리트의 온도이력 및 강도특성에 관한 연구 (A Study on the Strength Properties and the Temperature Hysteresis of Winter Concrete according to the difference of Curing Method in Mock-up Test)

  • 원철;한천구
    • 한국건축시공학회지
    • /
    • 제3권4호
    • /
    • pp.87-94
    • /
    • 2003
  • This study is to investigate the temperature hysteresis and development of compressive strength due to the curing conditions and to evaluate the optimum curing condition of test specimens showing the same development of strength to that of real structures in cold weather. The results of temperature curve with curing conditions in mock-up tests showed the trend of decrease plain concrete with insulation form, plain concrete with heating, concrete with accelerator for freeze protection, and control concrete in turn. The strength development of plain concrete of inside and outside of shelter showed the very slow strength gains due to early freezing, but that of concrete with accelerator for freeze protection showed the gradual increase of strength with time. From this, it is clear that accelerator for freeze protection has the effects of refusing the freezing temperature and accelerating the hardening under low temperature. Strength test results of small specimens embedded in members and located in insulation boxes at the site are similar to that of cores drilled from the members at the same ages, thus it is clear that these curing methods are effective for evaluating in-place concrete strength

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

2성분계 콘크리트의 구조체 보정강도(mSn) 산정을 위한 적산온도 기반 콘크리트의 압축강도 예측 연구 (A Study on the Prediction of Concrete Strength Based on Maturity Method for Calculating the Concrete Strength Correction Value (mSn) of Two-Component Concrete)

  • 김한솔;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.129-130
    • /
    • 2023
  • The compressive strength of concrete is greatly affected by the temperature inside the concrete at the initial age immediately after pouring. In the KCI Concrete Standard Specification, only the temperature correction strength (Tn) according to the curing temperature is applied in the mixing strength calculation formula, and mSn is not considered. The formula based on the Chrino model of the blast furnace slag concrete was calculated, and the strength of the structural concrete and the strength of the water cured specimen in the same mixture were compared with the predicted strength. As a result, the error between the predicted strength and the measured strength was greater in the structural concrete than in the concrete specimen.

  • PDF