• Title/Summary/Keyword: Concrete temperature

Search Result 2,483, Processing Time 0.031 seconds

Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations

  • Refrafi, Salah;Bousahla, Abdelmoumen Anis;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.311-325
    • /
    • 2020
  • In this research work, the hygrothermal and mechanical buckling responses of simply supported FG sandwich plate seated on Winkler-Pasternak elastic foundation are investigated using a novel shear deformation theory. The current model take into consideration the shear deformation effects and ensures the zero shear stresses on the free surfaces of the FG-sandwich plate without requiring the correction factors "Ks". The material properties of the faces sheets of the FG-sandwich plate are assumed varies as power law function "P-FGM" and the core is isotropic (purely ceramic). From the virtual work principle, the stability equations are deduced and resolved via Navier model. The hygrothermal effects are considered varies as a nonlinear, linear and uniform distribution across the thickness of the FG-sandwich plate. To check and confirm the accuracy of the current model, a several comparison has been made with other models found in the literature. The effects the temperature, moisture concentration, parameters of elastic foundation, side-to-thickness ratio, aspect ratio and the inhomogeneity parameter on the critical buckling of FG sandwich plates are also investigated.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Factors Effecting the Strength & Durability of Geopolymer Binder: A Review (지오폴리머의 강도와 내구성에 영향을 미치는 요인에 대한 고찰)

  • On, Jeong-Kwon;Kim, Gyu-Yong;Sasui, Sasui;Lee, Yae-Chan;Eu, Ha-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.460-468
    • /
    • 2021
  • Owing to the production of conventional concrete/cement, the climate crises is increasing and is mainly caused greenhouse gas (GHG) emission into the environment by industrial process. To reduce the emission of GHG, and excessive consumption of energy, research on geopolymer binder is increasing as it is environmentally friendly compared to the conventional binders such as Portland cement. The research on improving the strength and durability of geopolymer cement becomes one of the trending researches. Generally, the strength and durability of geopolymer binders are improved by altering alkaline solution & its concentration, the precursor materials and curing temperature & time, which significantly influence the chemical composition and microstructure of geopolymer to which the strength and durability of geopolymers relies. This paper included the detailed discussion on the factors affecting the mechanical properties and durability of geopolymer binder and the influence of reaction mechanism on the strength and durability of geopolymer is also discussed in this paper.

Neutron-shielding behaviour investigations of some clay-materials

  • Olukotun, S.F.;Mann, Kulwinder Singh;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Joshi, Amit;Tekin, H.O.;Sayyed, M.I.;Fasasi, M.K.;Balogun, F.A.;Korkut, Turgay
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1444-1450
    • /
    • 2019
  • The fast-neutron shielding behaviour (FNSB) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated using effective removal cross section, ${\Sigma}_R(cm^{-1})$, mass removal cross section, ${\Sigma}_{R/{\rho}}(cm^2g^{-1})$ and Mean free path, ${\lambda}$ (cm). These parameters decide neutron shielding behaviour of any material. A computer program - WinNC-Toolkit has been used for computation of these parameters. The toolkit evaluates these parameters by using elemental compositions and densities of samples. The proficiency of WinNC-Toolkit code was probe by using MCNPX and GEANT4 to model fast neutron transmission of the samples under narrow beam geometry, intending to represent the actual experimental setup. Direct calculation of effective removal cross section ($cm^{-1}$) of the samples was also carried out. The results from each of the methods for each types of the studied clay-materials (Ball clay and Kaolin) shows similar trend. The trend might be the fingerprint of water content retained in each of the samples being baked at different temperature. The compositions of each sample have been obtained by Particle-Induced X-ray Emission (PIXE) technique (Tandem Pelletron Accelerator: 1.7 MV, Model 5SDH). The FNSB of the selected clay-materials have been compared with standard concrete. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their FNSB.

A Near Real-Time Wind Tunnel System for Studying Evaporation of Chemical Agents(HD) (준실시간 소형 풍동 시스템을 이용한 화학작용제(HD) 증발특성 연구)

  • Kah, Dong-Ha;Jung, Hyunsook;Seo, Jiyun;Lee, Juno;Lee, Hae Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.135-140
    • /
    • 2019
  • Upon chemical agent release, it is of importance to study the characteristic persistence and evaporation of chemical agents from surfaces for the prediction of dispersion hazard. We have recently developed a fast and near real-time wind tunnel system proving the controlled environment(air flow, temperature, and humidity), continuously collects agent vapor and analyzes it. A thermal sorber/desorber is unnecessary to collect the vapor in the system we have developed. Instead, a tandem thermal sorber collects the vapor, which is then directly transferred to a fast gas chromatography(GC) for analysis. As a proof of concept, the evaporation of sulfur mustard agent(HD) was studied from glass, sand and concrete. The results were in an excellent agreement with those obtained from the conventional wind tunnel system.

Case Study on the Explosive Demolition of DCRE Incheon Plant (디씨알이 인천공장 발파해체 시공사례)

  • Kim, Sang-Min;Park, Keun-Sun;Kim, Ho-Jun;Kim, Hee-Do;Kim, Gab-Soo;An, Kyung-Ro
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.34-47
    • /
    • 2019
  • This case study is concerned with the project of the explosive demolition for the DCRE Incheon plant located in Hakik district in Incheon city. The building was severely aging due to the high temperature and sea winds of hundreds of degrees emitted by chimney-shaped steel structures inside the building. Due to this, the concrete of the column and the beam fell off and rusted rebar were exposed, and some of the slabs were severely damaged, making it difficult for workers to access the structure. Therefore, it is not possible to apply a mechanical demolition method in which heavy equipment enters the interior of the building, and an explosive demolition method was applied to allow the building to be demolished without dismantling the internal facilities of the building. The order of blasting proceeded in the order of (1) building ${\rightarrow}$ (2) chimney 2 ${\rightarrow}$ (3) chimney 1. A total of 406 electronic detonators (Unitronic 600) was used to sequentially initiate the explosives installed at appropriate in building and chimneys.

Seismic Fragility Evaluation of Cable Supported Bridges Based on Probability Distribution Using Safety Factors of Structural Members (안전율 확률분포에 근거한 케이블지지교량 주요부재의 내진성능 취약도 평가)

  • Park, Jin-Woo;Kim, Chang-Sung;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.37-44
    • /
    • 2019
  • The purpose of this study is to rationally determine the priority of seismic reinforcement of main(key) members of bridges. Cable Supported bridge was selected as the evaluation target and the reliability based on the probability distribution was used to evaluate the seismic fragility of the key members as a quantitative indicator. The safety factor, which is a random variable, is considered an artificial (fixed load and live load) load and a natural (earthquake, wind, temperature, etc.) load. The seismic load is applied as a possible earthquake during the lifetime of the bridge. From analyzing the fragility of each key member based on the seismic reliability, it can be concluded that the shoe (23.8%) was the most fragile, where the other members are ranked as place concrete (20.5%), pier (18.9%), foundation (17.3%) and cable (5.0%) respectively.

Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar

  • Etli, Serkan;Cemalgil, Selim;Onat, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.241-252
    • /
    • 2021
  • An experimental program was conducted to investigate the fresh properties, mechanical properties and durability characteristics of the self-compacting mortars (SCM) produced with pumice powder and Artificial Lightweight Fine Aggregate (aLWFA). aLWFA was produced by using fly ash. A total of 16 different mixtures were designed with a constant water-binder ratio of 0.37, in which natural sands were partially replaced with aLWFA and pumice powder at different volume fractions of 5%, 10% and 15%. The artificial lightweight aggregates used in this study were manufactured through cold bonding pelletisation of 90% of class-F fly ash and 10% of Portland cement in a tilted pan with an ambient temperature and moisture content. Flowability tests were conducted on the fresh mortar mixtures beforehand, to determine the self-compacting characteristics on the basis of EFNARC. To determine the conformity of the fresh mortar characteristics with the standards, mini-slump and mini-V-funnel tests were carried out. Hardened state tests were conducted after 7, 28 and 56 days to determine the flexural strength and axial compressive strength respectively. Durability, sorptivity, permeability and density tests were conducted at the end of 28 days of curing time. The test results showed that the pumice powder replacement improved both the fresh state and the hardened state characteristics of the mortar and the optimum mixture ratio was determined as 15%, considering other studies in the literature. In the aLWFA mixtures used, the mechanical and durability characteristics of the modified compositions were very close to the control mixture. It is concluded in this study that mixtures with pumice powder replacement eliminated the negative effects of the aLWFA in the mortars and made a positive contribution.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

Structural Performance Evaluation on Ended Block of Wide Flange PSC Girder for the Semi-Integral Bridges (광폭 플랜지 PSC 거더 단부 프리캐스트 블록을 활용한 반일체식교대교량의 구조성능 평가)

  • Ka, Hoon;Choi, Jin-Woo;Kim, Young-Ho;Park, Jong-Myen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Semi-integral abutment bridges are a type of integral abutment bridges. These bridges eliminate expansion joints on the structure and can be used in situations not suitable for full-integral abutment bridge. Moreover, Semi-integral bridges have excellent maintenance and can be economically constructed. This study is about precast wall-type blocks at each end which provide lateral support for PSC girder, as well as acting as retaining walls to resist longitudinal movement of semi-integral abutment bridge. The end-diaphragm connection between ended blocks of PSC girders can be achieved by in-suit nonshrinkage concrete. The results show that 3-point experiment of end-diaphragm beam have an acceptable performance which is so better than results of structural design. Moreover, the effects of backfill soil on semi-integral abutment bridge constructed are analyzed the behavior according to the temperature changes.