• Title/Summary/Keyword: Concrete structure

Search Result 4,641, Processing Time 0.032 seconds

Development of Function Breakdown Structure of Building Element based on Performance for Idea Connection in Design VE (설계VE Idea 연계를 위한 성능기반 건물 부위별 기능분류체계 개발)

  • Lee, In-Jai;Hyun, Chang-Taek;Son, Myung-Jin;Kim, Dae-Hyun;Kim, Yun-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.5
    • /
    • pp.12-22
    • /
    • 2011
  • Design value engineering (VE) has been performed in many construction projects according to the changes in the construction for most of the VB function analysis that performed, are problems that focus on function analysis and generating ideas based on individual experience of VE team member than generating ideas and value improvement of systematic function analysis. This may be due to the quotation of previously performed function analysis data, general function analysis, and abstract function definitions that do not cite the concrete characteristics of each facility. Therefore, in this study, the proposed cases from the existing design VE workshops, the current conditions of the connection between functions and ideas and of the idea categorization by building part were studied to determine why functions and ideas are not connected, and to propose pertinent improvement directions. on a performance-based function categorization system by building part that can provide the logical connection between functions and ideas in the function definition/categorization and function arrangement phases in the function analysis phase, the most important phase in VE activities, was developed by reflecting the required performance and functions for each part of the facility.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

A Study on the Selection Method of Foundation Type in the Underground Parking Lot of Apartments (공동주택 지하 주차장 기초형식 선정방법에 관한 연구)

  • Im, Nam-Gi;Lee, Yeong-Do;Bae, Yong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.109-116
    • /
    • 2004
  • Normally easy task of plat in urban architecture is that using underground full of activities for increase building site efficiency. Especially for using underground space for the parking lot. Also utilize underground is more increase for fulfill requirement in modern society considered with environmental friendly architecture. The primary objective of this study is to apply analyzed formal foundation type for selecting the optimum type of parking lots considered with structural stability, economical efficiency, construction efficiency, construction duration. This study aim to on criteria decided through the questionaries for the selection considered with in the scale of second stories parking lots underground, parking volume is 80 and reinforced concrete structure. The bearing capacity is 6~8m and downward from surface, healthy ground bearing capacity is 40 t/m2. This study comparative analysis and discuss economical efficiency, construction efficiency, construction duration based constructivist stability which applied Single foundation, Mat foundation, Drop Mat foundation. The result of this study is as follows: First, the result of economical efficiency is that on the basis of single foundation, Drop Mat foundation is 1.88, Mat foundation 2.04 as a comparative analysis on the basis of total construction cost included material cost, labor coast and machinery cost. Second, the result of construction efficiency order is single foundation, Drop Mat foundation, Mat foundation as a comparative analysis on the based connected characteristics. Third, the result of construction duration is that on the basis of Mat Foundation, Drop Mat foundation is 1.33, single foundation is 1.87 as a comparative analysis Critical Path. Forth, Each foundational type characteristics order through the matrix method is that overall each formal type of foundation contraries at economical efficiency and construction efficiency, construction duration. Also expect contradiction between engineers and owners due to engineer pursuit construction duration and ewer to begin with economical efficiency. Fifth, The selection of suitable foundation formal type needs that based consider project characteristic and field condition as according to above result of a comparative analysis. As a result, a comparative analysis economical efficiency, construction efficiency, construction duration of Mat foundation, Drop Mat foundation, single foundation with 3Bay reinforced structure underground parking lots on the healthy ground.

Investigation of Domestic Refrigeration and Freezing Warehouses (국내 냉장냉동 창고 현황 조사)

  • Sun, Il-suck
    • Journal of Distribution Science
    • /
    • v.6 no.2
    • /
    • pp.5-19
    • /
    • 2008
  • This study aims to provide the present general state of basic data about refrigeration and freezing warehouses scold storages because basic data about refrigeration and freezing warehouses are insufficient and imperfect at the moment. Research contents include the present general state of cold storages such as sales amount, capital(money invested), storage possession state by type, keeping area, cold storage facility capacity, and facility state such as existence of rack, building structure and floor height, and possessed facility state. According to research results, it was found that 86.7% of refrigeration and freezing warehouses are located in the capital region and Busan region in terms of regional distribution, and the average keeping area was found to be bigger in these two regions than that of other regions. In addition, the research shows that more than 80% of companies possess bonded warehouses and there was no big difference in the size and capacity of refrigeration and freezing warehouses. Regarding building structure, most of them were found to be reinforced concrete. However, only 25% of companies installed racks, but there was no statistical significance between existence of rack and the amount of capital and sales. Possessed facilities were found in the order of freight elevator, information system and dock. When it comes to cargo gear, companies were found to possess 9.1 units of forklift and 2.2 units of reach stacker in average. This research is expected to lay a basis for investigating, predicting and developing the local cold storage industry, and more detailed studies will be needed in the future.

  • PDF

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가)

  • Heur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

A Behavior Test on a Frictional-Wedge-Type Vibration Isolation Device for Vibration Reduction of a Railway Track (열차 진동 저감을 위한 마찰쐐기형 방진장치의 거동 시험)

  • Lee, Chanyoung;Choi, Sanghyun;Lee, Yooin;Kwon, Segon;Koh, Yongsung;Ji, Yongsoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • In the case of railway facilities in cities such as a railway station or a bridge, the significance of design for reducing vibration and noise is getting more significant. The vibration control solution is in need especially for an elevated railway station to block vibration of a train and secondary noise effectively. Even though a vertical vibration isolation device is able to be applied effectively to railway facilities such as elevated railway stations which transfer vibration directly from a train to a structure, the development of the vertical device is much slower than a horizontal vibration isolation device. In this paper, a vibration isolation device using wedge type friction material which is currently developing to reduce train-induced vibration effectively is introduced and test results for verification of dynamic performance is also presented. The vibration test on a concrete structure equipped with the developed vibration isolation device is conducted through which the isolation performance and dynamic properties are verified and needs for improving the performance of the device is identified.

Experimental Analysis of Korean and CPMP Textbooks: A Comparative Study (한국과 미국의 교과서 체제 비교분석)

  • Shin, Hyun-Sung;Han, Hye-Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.2
    • /
    • pp.309-325
    • /
    • 2009
  • The purpose of the study was to investigate the differences between Korean mathematics textbooks and CPMP textbooks in the view of conceptual network, structure of mathematical contents, instructional design, and teaching and learning environment to explore the implications for mathematics education in Korea. According to the results, Korean textbooks emphasized the mathematical structures and conceptual network, on the other hand, CPMP textbooks focused on making connections between mathematical concepts and corresponding real life situations as well as mathematical structures. And generalizing mathematical concepts at the symbolic level was very important objective in Korean textbooks, but in the CPMP textbooks, investigating mathematical ideas and solving problems in diverse contexts including real- life situations were considered very important. Teachers using Korean textbooks preferred an explanatory teaching method with the use of concrete manipulatives and student worksheet, however, teachers using CPMP textbooks emphasized collaborative group activities to communicate mathematical ideas and encouraged students to use graphing calculators when they explore mathematical concepts and solve problems.

  • PDF

Cyclic Loading Test on Connection of SRC Column-Composite Beam Consisting of H-Section and U-Section Members (SRC기둥-H형단면과 U형단면으로 구성된 합성보 접합부의 반복가력실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Kim, Jin Won;Ryu, Hong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2014
  • In this study, connection of steel reinforced concrete(SRC) column and composite beam which consists of H-section and U-section members were tested under cyclic loading. An essential point of the composite beam is the structural performance of welded joint between the H-section and the U-section members. To improve the structural performance of joint of two beam members, vertical stiffeners, trapezoidal stiffeners, and top bars were used. Five full-scaled specimens were designed to study the effect of a number of parameters on cyclic performance of connections such as H-section beam size($H-500{\times}200{\times}10{\times}16$, $H-600{\times}200{\times}11{\times}17$), the presence of stiffeners and top bars, and the presence of no weld access hole(WAH) method. Based on the test results, deformation capacity of the specimens with H-500 series beam and H-600 series beam were 4% and 3% rotation angle, which is the requirement for the Special Moment Frame and Intermediate Moment Frame(IMF), respectively. Test result showed that deformation capacity of connection with stiffeners and top bars is greater than that of connection without stiffeners and top bars. Finally, energy dissipation capacity and strain profile of specimens were summarized.

A Proposal of Durability Prediction Models and Development of Effective Tunnel Maintenance Method Through Field Application (내구성 예측식의 제안 및 현장적용을 통한 효율적인 터널 유지관리 기법의 개발)

  • Cho, Sung Woo;Lee, Chang Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.148-160
    • /
    • 2012
  • This study proposed more reasonable prediction models on compressive strength and carbonation of concrete structure and developed a more effective tunnel safety diagnosis and maintenance method through field application of the proposed prediction models. For this study, the Seoul Metro's Line 1 through Line 4 were selected as target structures because they were built more than 30 years ago and have accumulated numerous diagnosis and maintenance data for about 15 years. As a result of the analysis of compressive strength and carbonation, we were able to draw prediction models with accuracy of more than 80% and confirmed the prediction model's reliability by comparing it with the existing models. We've also confirmed field suitability of the prediction models by applying field, the average error of an estimate on compressive strength and carbonation depth was about 20%, which showed an accuracy of more than 80%. We developed a more effective maintenance method using durability prediction Map before field inspection. With the durability prediction Map, diagnostic engineers and structure managers can easily detect the vulnerable points, which might have failed to reach the standard of designed strength or have a high probability of corrosion due to carbonation, therefore, it is expected to make it possible for them to diagnose and maintain tunnels more effectively and efficiently.