• Title/Summary/Keyword: Concrete slab bridge

Search Result 297, Processing Time 0.021 seconds

Equivalent boundary conditions to analyze the realistic fatigue behaviors of a bridge RC slab

  • Khan, Arslan Q.;Deng, Pengru;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.369-383
    • /
    • 2022
  • In this study, an equivalent boundary conditions (BCs) determination method is developed numerically for a panel reinforced concrete (RC) slab to realistically analyze the deformation and fatigue behaviors of a bridge RC slab. For this purpose, a finite element analysis of a bridge RC slab is carried out beforehand to calculate the stiffness of the bridge RC slab, and then the equivalent BCs for the panel RC slab are determined to achieve the same stiffness at the BCs to the obtained stiffness of the bridge RC slab at the corresponding locations of the bridge RC slab. Moreover, for the simulation of fatigue behaviors, fatigue analysis of the panel RC slab is carried out employing a finite element method based on a numerical model that considers the bridging stress degradation. Both the determined equivalent BCs and the BCs that have been typically applied in past studies are employed. The analysis results confirm that, in contrast to the panel RC slab with typically used BCs, the panel RC slab with equivalent BCs simulate the same bending moment distribution and deformation behaviors of the bridge RC slab. Furthermore, the equivalent BCs reproduce the extensive grid crack pattern in the panel RC slab, which is alike the pattern normally witnessed in a bridge RC slab. Conclusively, the panel RC slab with equivalent BCs behaves identical to the bridge RC slab, and, as a result, it shows more realistic fatigue behaviors observed in the bridge RC slab.

Experimental Comparison for Static Performance of I-beam Concrete Slab (I-형강 합성바닥판의 정적 성능비교)

  • 박길용;박창규;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.947-952
    • /
    • 2002
  • Recently, there have been increased much concerns about repair and rehabilitation works for aged concrete structures. In particular, it is known that due to repeated overburden vehicle there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam concrete slab through static test.

  • PDF

A Experimental Study on the Static Strengthen Effect of Bridge Deck Strengthened with GFS (GFS로 성능향상된 교량 바닥판의 정적 보강효과)

  • 심종성;오홍섭;류승무;박성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.739-744
    • /
    • 2001
  • The concrete bridge deck is quitely required to be replaced or strengthened due to decreasing load carrying capacity. In this study, to increase load capacity of the reinforced concrete slab, bridge deck is reinforced with the glass fiber sheets. they are examined on the strengthen effect and the static behavior, This paper considers relation of load-displacement and strain-distance. The static behavior of the slab strengthened is represented to maximum load. Owing to that, they are examined on increasing load carrying capacity of reinforced bridge deck and strengthen effect about on the crack.

  • PDF

Experimental Fatigue Performance of Concrete Slab with I-shaped Steel (I 형강 격자 상판의 피로 성능에 관한 실험적 연구)

  • 박창규;김용곤;김철환;이재형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.541-546
    • /
    • 2000
  • Recently, there have been increased mush concerns about repair and rehabilitation works for aged concrete structures to keep up with rapid economic growth in Korea since the early 1970's. In particular, it is believed in these days that there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This test is to investigate physical properties of I-Beam with punch holes itself, and then to investigate structural properties of assembled I-Beam panels through static and fatigue test, of which can be utilized for the development of new construction method of concrete slab in bridge structure.

  • PDF

Minimum Thickness of RC Bridge Slab Considering Fatigue and Serviceability (피로강도와 사용성을 고려한 RC 바닥판의 최소두께)

  • Hwang Hoon Hee;Joh Changbin;Kim Byung Suk;Jung Chul Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.248-251
    • /
    • 2004
  • This study was performed to propose the minimum thickness of RC slab that satisfies constructibility, fatigue safety, and serviceability requirements such as deflection control. Three different minimum thicknesses are calculated using concrete shear and rebar fatigue formulas, and deflection control, respectively, and checked by constructiblity. The maximum of these three minimum thicknesses is proposed as the minimum thickness of RC slab, which shows that the minimum thickness requirement of RC slab from Korean Bridge Design Code can be thinner than now.

  • PDF

Cracking Behavior Of Reinforced Concrete Voided Slab Bridge (철근 콘크리트 중공슬래브 교량의 균열 거동)

  • 김인배;손혁수;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.763-768
    • /
    • 2000
  • In this study, the tests were performed on a series of reinforced concrete strip specimens to investigate a cracking behavior of reinforced concrete voided slab bridge. Also, the mid-span deflections, the crack widths and failure mode of reinforced concrete strip specimens were studied. It was found that serviceability of cracking and deflection at reinforced concrete voided slab bridge which were constructed and designed under verifying serviceability as design criteria are lower than common reinforced concrete member. On the basis of the experimental results, it is more reasonable concrete to evaluate crack occurring $f_r=2.0\surd{f_{ck}}$ rather than modulus of rupture of concrete, $f_r=0.8\surd{f_{ck}}$

  • PDF

Analysis of Prestressed Concrete Slab Bridge by the Beam Theory (보 이론에 의한 PSC 슬래브 교량의 해석)

  • Han, Bong-Koo;Kim, Duk-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2003
  • A prestressed concrete slab bridge is analyzed by the specially orthotropic laminates theory. Both the geometry and the material of the cross section of the slab are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis.

Development of Probabilistic Prediction System for Remaining Life of Reinforced Concrete Bridge Decks (도로교 콘크리트 바닥판의 합리적인 수명 평가 및 예측시스템 개발)

  • 오병환;최영철;이준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.637-640
    • /
    • 2002
  • The deterioration of RC deck slabs has been a serious problem and high portion of budget has been a spent for repair and strengthening of deck slab. The concrete deck slabs are subject to direct application of vehicle loading and accumulation of fatigue damage. Besides, various environmental causes. In this paper, an probabilistic study is carried out to predict exact load effects and structural capacity of deck slab during its service life, and estimate an appropriate remaining life of deck slab. To achieve this purpose the live load model is developed using by influence line including deterioration of deck slab, and deterioration model of bridge deck slab is developed. In addition, the fatigue life of reinforced concrete deck slabs considering corrosion of reinforcement are estimated based on experimental formula. This study will help rational decisions for the management and repair of reinforced concrete deck slabs.

  • PDF

Horizontal Shear Behavior of Precast Concrete Slab Track on Bridge (교량구간 프리캐스트 콘크리트 슬래브궤도의 수평전단 거동)

  • Jang, Seung-Yup;Na, Sung-Hoon;Kim, Yu-Bong;Ahn, Ki-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.998-1001
    • /
    • 2011
  • The concrete track on bridge should be designed to effectively cope with the behavior of the bridge superstructure. For this purpose, in general, shear keys are designed to be installed at a certain intervals on the bridge deck, and the track slab is cast on these shear keys to transfer the load induced by the relative displacement between track and bridge. In this study, to apply the precast concrete slab track on bridge, a shear key structure and its effective installation method are presented. Also, the structural behavior of this shear key has been evaluated by the laboratory mock-up test.

  • PDF

Analytical Study on I-beam of I-beam Grated Concrete slab (I 형강 격자 상판의 주부재 I형강에 대한 해석적 연구)

  • 박창규;김용곤;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.437-442
    • /
    • 2001
  • Recently, there have been increased much concerns about repair and rehabilitation works for aged concrete structures. In particular, it is known that due to repeated overburden vehicle there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory. and will be preassembled into the Panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam with punch holes itself through static and fatigue test with rational numerical analysis Finally this research is to suggest reformed I-beam through the numerical analysis.

  • PDF