• 제목/요약/키워드: Concrete member

검색결과 1,056건 처리시간 0.026초

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 압축강도특성을 중심으로 - (An Experimental Study of Precast Concrete Alters Cement Types of High-Strength Concrete)

  • 박흥이;기전도;김성진;이회근;박병근;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.65-68
    • /
    • 2009
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, and rationalization of construction are required.large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different strength characteristics. Concerning this, in order to suggest strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between core strength and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

사용중인 구조물의 보강효과에 대한 해석적 연구 (Numerical Analysis on External Strengthening Effects in Aged Structures)

  • 신승교;임윤묵;김문겸;박동철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

CFTA 거더의 해석모델 개발 (Analytical Model for CFTA Girder)

  • 전종수;박성재;김용재;박명균;김정호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.169-170
    • /
    • 2009
  • CFT 구조는 강재 또는 철근콘크리트로 이루어진 일반 구조용 부재와 비교해서 많은 이점을 가진다. 강재 박스와 콘크리트의 구속효과에 의한 전체구조물의 연성도, 강성 및 하중지지능력의 증가 때문에 CFT 구조는 기둥 부재에 광범위하게 적용되고 있다. 이러한 CFT 구조의 장점들 때문에 최근들어 CFT 부재는 거더부재로 교량구조물에 확대 적용되고 있다. 본 연구의 목적은 CFT 구조, 아치형상 및 긴장재로 이루어진 CFTA 거더교의 해석모델을 개발하고 이를 적용한 설계법을 제안하기 위함이다.

  • PDF

건조수축에 의한 철근콘크리트 부재의 곡률과 처짐 (Curvature and Deflection of Reinforced Concrete Member Due to Shrinkage)

  • 김진근;이상순;김민수;신병천
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.333-338
    • /
    • 1998
  • Deflections due to warping are frequently ignored in design calculation. For thin member, shrinkage deflection results in important and objectionable additions to the dead load deflection. Thus it may be desirable to consider warping effects due to shrinkage for thin member. Some methods for computing shrinkage curvature have been proposed by many researchers. The approximate methods widely used in the recent years are the equivalent tensile force method. Miller's method and Branson's method (an empirical method based on Miller's approach extended to include doubly reinforced beams). These method were somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, the approximate method for computing shrinkage curvature are reviewed and new approximate method based on the Age-Adjusted Effective Modulus method is proposed.

  • PDF

해석법 차이에 의한 프리스트레스트 콘크리트 보부재의 잔류변형률 비교 (Comparison of Residual Strain of Prestressed Concrete Beam Member by Different Analysis Method)

  • 이덕기
    • 한국지진공학회논문집
    • /
    • 제21권4호
    • /
    • pp.189-195
    • /
    • 2017
  • In the seismic design of building structural members, due to the complexity of the placement of PC steels in prestressed concrete members, it is necessary to review and define the definition of member damage in comparison with reinforced concrete members. In this study, the results of past experiments compared with the calculation results by 'section Analysis Method', with the aim of reviewing the precision of calculation results when member damage evaluation is performed using the section analysis method. Furthermore, it is also compared with the calculation results by the 'split Element Method'. In addition, parametric studies were carried out, and the influence of the difference between the amount of PC steels and reinforced bar on the residual strain was examined.

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

콘크리트의 휨 압축강도의 크기효과 (Size Effect for Flexural Compressive Strength of Concrete)

  • 김진근;이성태;양은익
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.157-165
    • /
    • 1999
  • 콘크리트 휨부재의 극한강도를 예측할 떼에는 부재의 크기효과는 고려하지 않는 것이 일반적이다. 그러나 콘크리트는 여러 형태의 하중에 대하여 부재의 크기가 증가함에 따라 강도가 감소하는 크기효과를 항상 나타낸다. 따라서 본 논문에서는 휨압축 부재에 대한 실험을 수행하여 크기효과를 검토하고자 한다. 이를 위하여 축 압축력과 휨모멘트를 동시에 받는 일련의 C형 공시체에 대한 실험을 수행하였다. 공시체의 크기는 3가지 였으며 콘크리트의 압축강도는 528 kg/$cm^2$로 하였다. 실험결과로부터 부재의 크기가 증가함에 따라 파괴시의 휨압축 강도가 감소하는 크기효과가 존재하며, 실린더 공시체의 축압축 강도보다 강도감소 현상이 더욱 분명함을 알 수 있었다. 최종적으로 실험자료에 대한 회귀분석을 수행하여 이를 예측할 수 있는 모델식을 제안하였다.

고내구성 재료를 사용한 휨부재의 균열에 따른 염화물 침투 특성 (Characteristics of Chloride Penetration in Cracked Flexural Member using Durable Materials)

  • 진상호;김일순;김명유;양은익;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.401-404
    • /
    • 2008
  • 균열은 콘크리트에 염소이온과 같은 유해한 물질의 침투경로가 되어 내구성에 심각한 열화를 야기한다. 따라서 고내구성 재료를 사용한 콘크리트 휨부재에서의 균열 발생에 따른 염소이온 침투특성을 검토하고자 하였다. 이를 위해, 고내구성 재료를 적용한 보에 하중을 가하여 휨균열을 도입시키고, 촉진 염화물 침투실험(RCPT)과 장기 염화물 침투실험을 실시하여 염화물 침투 특성을 파악하였다. 실험결과에 따르면, 고내구성 재료를 적용한 부재는 균열이 발생하여도 일반 콘크리트 부재에 비해 높은 염화물 침투 저항성을 보였다. 특히 고로슬래그 미분말을 적용한 경우, 균열 부재의 장기 염화물 침투 실험에서 탁월한 염화물 침투 저항성을 보였다.

  • PDF

해석적 방법에 의한 강섬유 보강 초고성능 콘크리트(UHPFRC) 휨부재의 강도 평가 (Strength Evaluation of UHPFRC Flexural Member by Analytical Method)

  • 박우진;황훈희
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.55-59
    • /
    • 2013
  • The analytical model was constituted to evaluate the flexural strength of UHPFRC(ultra high performance fiber reinforced concrete) member. The analytical approach was attemped to study the effect of the joint and the result compared with the experimental study to verify the analytical model. The calculated value tends to underestimate about 23%~25% in comparison with the experimental result of the jointed test member because the bond stress between precast UHPFRC and cast-in-place UHPFRC surface is not considered in the analytical model. But in the case of the continuous test member, the analytical model provides reasonable results for the flexural strength of UHPFRC member.