• Title/Summary/Keyword: Concrete filled steel tube column

Search Result 276, Processing Time 0.023 seconds

Analytical Study on the Fire Resistance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내화 성능에 대한 해석 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Jong Sup;Kim, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • A column resisting axial load and seismic load is one of the main members in a structural system. The heated column by event of a fire can lose its strength and it may damage its structural system or cause the collapse of the entire structural system. In this study, the fire resistance capacity of internally confined hollow concrete filled tube (ICH CFT) column was investigated. In an ICH CFT column, the yield strength of the external tube is important as a concrete filled tube (CFT) column because the external tube confines the filled concrete and the strength of the column depends on the confined effect. A study was performed by finite element analyses considering the confined effect and material nonlinearity as the temperature changes by the fire. The hollow ratio, the thickness of the external tube, and the strength of concrete were selected as the parameters for the analyses. The analyses were performed by using a commercial FEA program (ABAQUS) and nonlinear concrete model program. The analysis results showed that the hollow ratio and the strength of concrete mainly affect the fire resisting capacity of an ICH CFT column.

A Study on the Mechanical Properties of Concrete Filled Steel Tube Column under Centric Axial Load (중심축력을 받는 콘크리트 충전강관 기둥의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.133-144
    • /
    • 1995
  • This study investigated to the properties of structural behaviors through a series of experiment with the key parameter, such as diameter-to-thickness(D/t) ratio, selenderness ratio of steel t~ube and strength of concrete under loading condition simple confined concrete by steel tube as a fundmental study on adaptability with structural members in high-rise building. The obtained results are sumnarised as follow. (1) The fracture mode of confined concrete was presented digonal tension fracture in the direction of $45^{\circ}$ with compression failure at the end of specimen in stub column, but the fracture mode of long column was assumed an aspect of bending fracture transversely. (2) The deformation capacity and ductility effect was increased by confine steel tube for concrete. (3) 'The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint of concrete considered D / t ratio, selenderness ratio of steel tube anti strength of' concrete were proposed.

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement

  • Ho, J.C.M.;Luo, L.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.889-910
    • /
    • 2012
  • Because of the heavy demand of confining steel to restore the column ductility in seismic regions, it is more efficient to confine these columns by hollow steel tube to form concrete-filled-steel-tube (CFST) column. Compared with transverse reinforcing steel, steel tube provides a stronger and more uniform confining pressure to the concrete core, and reduces the steel congestion problem for better concrete placing quality. However, a major shortcoming of CFST columns is the imperfect steel-concrete interface bonding occurred at the elastic stage as steel dilates more than concrete in compression. This adversely affects the confining effect and decrease the elastic modulus. To resolve the problem, it is proposed in this study to use external steel confinement in the forms of rings and ties to restrict the dilation of steel tube. For verification, a series of uni-axial compression test was performed on some CFST columns with external steel rings and ties. From the results, it was found that: (1) Both rings and ties improved the stiffness of the CFST columns and (2) the rings improve significantly the axial strength of the CFST columns while the ties did not improve the axial strength. Lastly, a theoretical model for predicting the axial strength of confined CFST columns will be developed.

An Experimental Study on Concrete Filled Steel Tube Column of Mock-up test take advantage of the High Strength Concerete(over the 80MPa) (초고강도 콘크리트(800kgf/$\textrm{cm}^2$ 이상)를 이용한 콘크리트충전 강관기둥에 대한 실물대 실험)

  • 이장환;공민호;전판근;정근호;이영도;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.21-25
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence, to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete (800kgf/$\textrm{cm}^2$) especially for CFT through the data from the real size mock-up.

  • PDF

Axial behavior of steel-jacketed concrete columns

  • Rupp, J.;Sezen, H.;Chaturvedi, S.
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.59-75
    • /
    • 2014
  • A new concrete confinement model is developed to predict the axial load versus displacement behavior of circular columns under concentric axial load. The new confinement model is proposed for concrete filled steel tube columns as well as circular reinforced concrete columns with steel tube jacketing. Existing confinement models were evaluated and improved using available experimental data from different sets of columns tested under similar loading conditions. The proposed model is based on commonly used confinement models with an emphasis on modifying the effective confining pressure coefficient utilizing the strength of the unconfined concrete and the steel tube, the length of the column, and the thickness of the steel tube. The proposed model predicts the ultimate axial strength and the corresponding strain with an acceptable degree of accuracy while also highlighting the importance of the manner in which the steel tube is used.

Behavior of Beam-to-Concrete Filled Steel Tube Column Rigid Connections (콘크리트충전 각형강관기둥-보 접합부의 거동에 관한 연구)

  • Kim, Cheol Hwan;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.741-748
    • /
    • 1998
  • Experimental studies were carried out with test parameters: diaphragm yield type and beam yield type, the opening hole size of inner steel diaphragm, and the existence of slab in order to understand the behavior of beam-to-concrete filled steel tube column rigid connections under cyclic loading condition. Test results show that the connections have good rotational capacity when the beam yields first and the joints should be designed such that the beam yields prior to the inner diaphragms.

  • PDF

Flexural strength of high-strength concrete filled steel tube columns strengthened by carbon fiber sheets (탄소섬유쉬트로 보강한 고강도 콘크리트 충전강관(CFT) 기둥의 휨내력에 관한 연구)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The CFT (Concrete Filled Steel Tube) columns became popular in high rise building construction due to not only its composite effect but also economic advantage. However, it has been pointed out in various previous researches that the current practice in CFT columns may lead the steel tube to probable local buckling at critical sections of the columns right after yielding. To resolve such a problem, the TR-CFT (Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the local buckling state at the critical section by wrapping the CFT columns with carbon fiber sheet. The validity of the proposed column system is validated through the present paper by observing the experimental performance and comparing it with the analytical prediction of the TR-CFT columns with hish strength concrete. It is also shown that the current design code provisions such as ACI-318, in which the contribution of concrete confining effect filled in steel tube is not appropriately accounted for, may contain too much conservatism.

An Experimental Study on the Bond Strengths for Concrete Filled Steel Tube Columns using a Push-Out Test (단순가력실험을 통한 콘크리트충전 강관기둥의 부착응력에 관한 연구)

  • Woo, Hae Sung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.481-487
    • /
    • 2002
  • Currently, the load transfer's mechanism from a beam to a column has yet to ve clarified in a concrete filled steel tubular (CFT) structure with a connection type of an exterior diaphragm. The loads for each floor are transferred to the concrete core from a steel beam through ha contacted face between an in-filled concrete and the interior surface of a steel tube. Thus, a Push-Out test was performed to investigate the load transfer mechanism. A total of 30 samples were tested to confirm the bond stress and/or axial load distribution between a steel tube and in-filled concrete for CFT column. The main parameters considered for this study included concrete type, steel tube-shape/length, and the effect of a weld joint wit ha backing strip for a column splice. Test results were summarized to confirm load transfer behavior between a concrete and steel tube for each experimental parameter, using the analytical approach to verify experimental results.

An Experimental Study on TR-CFT Columns subjected to Axial Force and Cyclic Lateral Loads (축력과 반복수평력을 받는 TR-CFT기둥에 관한 실험적 연구)

  • Park, Jai Woo;Kim, Jin Ho;Hong, Young Kyun;Hong, Gi Soup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.403-411
    • /
    • 2007
  • CFT (Concrete filled steel tube) column has become popular for building construction due to not only its composite effect but also economic effect. However, the conventional CFT column also has its own disadvantages having plastic buckling at the end of column followed by the reduction of strength by yielding of steel tube. An experiment on TR-CFT (Transversely reinforced CFT) column are conducted for making up for conventional CFT column's disadvantages. The experiment parameters are strength of concrete, the layer numbers of carbon fiber sheet. In this study, hysteretic curve, initial stiffness, strength, plastic deformation capacity, and dissipated energy are compared and analyzed between CFT and TR-CFT columns.