Browse > Article
http://dx.doi.org/10.12989/eas.2012.3.6.889

Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement  

Ho, J.C.M. (Department of Civil Engineering, The University of Hong Kong)
Luo, L. (Department of Civil Engineering, The University of Hong Kong)
Publication Information
Earthquakes and Structures / v.3, no.6, 2012 , pp. 889-910 More about this Journal
Abstract
Because of the heavy demand of confining steel to restore the column ductility in seismic regions, it is more efficient to confine these columns by hollow steel tube to form concrete-filled-steel-tube (CFST) column. Compared with transverse reinforcing steel, steel tube provides a stronger and more uniform confining pressure to the concrete core, and reduces the steel congestion problem for better concrete placing quality. However, a major shortcoming of CFST columns is the imperfect steel-concrete interface bonding occurred at the elastic stage as steel dilates more than concrete in compression. This adversely affects the confining effect and decrease the elastic modulus. To resolve the problem, it is proposed in this study to use external steel confinement in the forms of rings and ties to restrict the dilation of steel tube. For verification, a series of uni-axial compression test was performed on some CFST columns with external steel rings and ties. From the results, it was found that: (1) Both rings and ties improved the stiffness of the CFST columns and (2) the rings improve significantly the axial strength of the CFST columns while the ties did not improve the axial strength. Lastly, a theoretical model for predicting the axial strength of confined CFST columns will be developed.
Keywords
columns; concrete-filled-steel-tube; external confinement; normal-strength concrete; rings; ties;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
연도 인용수 순위
1 Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng.-ASCE, 125(5), 447-484.
2 Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel tube short columns", J. Struct. Eng.-ASCE, 130(2), 180-188.   DOI   ScienceOn
3 Tokgoz, S. and Dundar, C. (2008), "Experimental tests on biaxially loaded concrete-encased composite columns", Steel Compos. Struct., 8(5), 423-438.   DOI
4 Uenaka, K., Kitoh, H. and Sonoda, K. (2008), "Concrete filled double skin tubular members subjected to bending", Steel Compos. Struct., 8(4), 297-312.   DOI
5 Usami, T. and Fukumoto, Y. (1984), "Welded box compression members", J. Struct. Eng.-ASCE, 110(10), 2457-2470.   DOI   ScienceOn
6 Usami, T. and Ge, H. (1994), "Ductility of concrete-filled steel box columns under cyclic loading", J. Struct. Eng.-ASCE, 120(7), 2021-2040.   DOI   ScienceOn
7 Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134.   DOI   ScienceOn
8 Valente, I.B. and Cruz, P.J.S. (2010), "Experimental analysis on steel and lightweight concrete composite beams", Steel Compos. Struct., 10(2), 169-185.   DOI
9 Watson, S., Zahn, F.A. and Park, R. (1994), "Confining reinforcement for concrete columns", J. Struct. Eng.- ASCE, 120(6), 1799-1824.
10 Wu, H. and Wang, Y. (2010), "Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets", Steel Compos. Struct., 10(6), 501-516.   DOI
11 Yin, X. and Lu, X. (2010), "Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube", Steel Compos. Struct., 10(4), 317-329.   DOI
12 Young, B. and Ellobody, E. (2006), "Experimental investigation of concrete-filled cold formed high-strength stainless steel tube columns", J. Constr. Steel Res., 62(5), 484-492.   DOI   ScienceOn
13 Wright, H.D. (1995), "Local stability of filled and encased steel sections", J. Struct. Eng.-ASCE, 121(10), 1382- 1388.   DOI   ScienceOn
14 Wu, Y.F. and Wei, Y.Y. (2010), "Effects of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns", Eng. Struct., 32(1), 32-45.   DOI   ScienceOn
15 Yan, Z.H. and Au, F.T.K. (2010), "Nonlinear dynamic analysis of frames with plastic hinges at arbitrary locations", Struct. Des. Tall Spec., 19(7), 778-801.
16 Zhao, H. and Yuan, Y. (2010), "Experimental studies on composite beams with high-strength steel and concrete", Steel Compos. Struct., 10(5), 373-383.   DOI
17 Zhou, K.J.H., Ho, J.C.M. and Su, R.K.L. (2010), "Normalised rotation capacity for deformability evaluation of high-performance concrete beams", Earthq. Struct., 1(3), 269-287.   DOI
18 Bayrak, O. and Sheikh, S.A. (1998), "Confinement reinforcement design considerations for ductile HSC columns", J. Struct. Eng.-ASCE, 124(9), 999-1010.   DOI   ScienceOn
19 Gonçalves, R. and Camotim, D. (2010), "Steel-concrete composite bridge analysis using generalised beam theory", Steel Compos. Struct., 10(3), 223-243.   DOI
20 Aly, T., Elchalakani, M., Thayalan, P. and Patnaikuni, I. (2010), "Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns", J. Constr. Steel Res., 66(1), 11-18.   DOI   ScienceOn
21 Bradford, M.A. (1996), "Design strength of slender concrete-filled rectangular steel tubes", ACI Struct. J., 93(2), 229-235.
22 Choi, S.M., Jung, D.S., Kim, D.J. and Kim, J.H. (2007), "An evaluation equation of load capacities for CFT square column-to-beam connections with combined diaphragm", Steel Compos. Struct., 7(4), 303-320.   DOI
23 Dai, X. and Lam, D. (2010), "Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections", Steel Compos. Struct., 10(6), 517-539.   DOI
24 Elchalakani, M. and Zhao, X.L. (2008), "Concrete-filled cold-formed circular steel tubes subjected to variable amplitude cyclic bending", Eng. Struct., 30(2), 287-299.   DOI   ScienceOn
25 Ellobody, E. and Young, B. (2006), "Design and behaviour of concrete-filled cold-formed stainle4ss steel tube columns", Eng. Struct., 28(5), 716-728.   DOI   ScienceOn
26 Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58(12), 1567-1591.   DOI   ScienceOn
27 El-Shihy, A.M., Fawzy, H.M., Mustafa, S.A. and El-Zohairy, A.A. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., 10(3), 281-295.   DOI
28 Furlong, R.W. (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div.-ASCE, 93(5), 113-124.
29 Fang, Y.F. and Zhu, L.T. (2009), "Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading", Steel Compos. Struct., 9(1), 19-38.   DOI
30 Ferretti, E. (2004), "On poisson ratio and volumetric strain in concrete", Int. J. Fracture, 126(3), 49-55.   DOI
31 Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068.   DOI   ScienceOn
32 Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res., 58(3), 353-372.   DOI   ScienceOn
33 Han, L.H., Lu, H., Yao, G.H. and Liao, F.Y. (2006), "Further study on the flexural behaviour of concrete-filled steel tube", J. Constr. Steel Res., 62(6), 554-565.   DOI   ScienceOn
34 Han, L.H. (2007), Concrete filled steel structures: theory and practice, second edition, Science Press, Beijing, China.
35 Ho, J.C.M. and Pam, H.J. (2003), "Inelastic design of low-axially loaded high-strength reinforced concrete columns", Eng. Struct., 25(8), 1083-1096.   DOI   ScienceOn
36 Ho, J.C.M., Lam, J.Y.K. and Kwan, A.K.H. (2010), "Effectiveness of adding confinement for ductility improvement of high-strength concrete columns", Eng. Struct., 32(3), 714-725.   DOI   ScienceOn
37 Ho, J.C.M. (2011a), "Limited ductility design of reinforced concrete columns for tall buildings in low to moderate seismicity regions", Struct. Des. Tall Spec., 20(1), 102-120.   DOI
38 Ho, J.C.M. (2011b), "Inelastic design of high-axially loaded concrete columns in moderate seismicity regions", Struct. Eng. Mech., 39(4), 559-578.   DOI
39 Hsu, H.L., Juang, J.L. and Luo, K.T. (2009), "Experimental evaluation on the seismic performance of high strength thin-walled composite members accounting for sectional aspect ratio effect", Steel Compos. Struct., 9(4), 367-380.   DOI
40 Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behaviour of stiffened concrete-filled steel columns", J. Struct. Eng.-ASCE, 128(9), 1222-1230.   DOI   ScienceOn
41 Hu, H.T., Huang, C.S. and Chen, Z.L. (2005), "Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination", J. Constr. Steel Res., 61(12), 1692-1712.   DOI   ScienceOn
42 Hu, H.T., Su, F.C. and Elchalakani, M. (2010), "Finite element analysis of CFT columns subjected to pure bending moment", Steel Compos. Struct., 10(5), 415-428.   DOI
43 Huang, Y., Long, Y. and Cai, J. (2008), "Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression", Steel Compos. Struct., 8(2), 115-128.   DOI
44 Johansson, M. and Gylltoft, K. (2002), "Mechanical behaviour of circular steel-concrete composite stub columns", J. Struct. Eng.-ASCE, 128(8), 1073-1081.   DOI   ScienceOn
45 Kitada, T. (1998), "Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan", Steel Compos. Struct., 20(4-6), 347-354.
46 Knowles, R.B. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Struct. Div.-ASCE, 95(12), 2565-2587.
47 Lam, L. and Teng, J.G. (2009), "Stress-strain model for FRP-confined concrete under cyclic axial compression", Eng. Struct., 31(2), 308-321.   DOI   ScienceOn
48 Lam, J.Y.K., Ho, J.C.M. and Kwan, A.K.H. (2009a), "Flexural ductility of high-strength concrete columns with minimal confinement", Mater. Struct., 42(7), 909-921.   DOI   ScienceOn
49 Lam, J.Y.K., Ho, J.C.M. and Kwan, A.K.H. (2009b), "Maximum axial load level and minimum confinement for limited ductility design of concrete columns", Comput. Concrete, 6(5), 357-376.   DOI
50 Lee, S.J. (2007), "Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads", Steel Compos. Struct., 7(2), 135-160.   DOI
51 Nakanishi, K., Kitada, T. and Nakai, H. (1999), "Experimental study on ultimate strength and ductility of concrete filled steel columns under strong earthquake", J. Constr. Steel Res., 51(3), 297-310.   DOI   ScienceOn
52 Li, B., Park, R. and Tanaka, H. (1991), "Effect of confinement on the behaviour of high strength concrete columns under seismic loading", Proceedings, Pacific Conference on Earthquake Engineering, Auckland, 67-78.
53 Liao, F.Y., Han, L.H. and He, S.H. (2011), "Behavior of CFST short column and beam with initial concrete imperfection: Experiments", J. Constr. Steel Res., 67(12), 1922-1935.   DOI   ScienceOn
54 Lu, X. and Hsu, C.T.T. (2007), "Tangent poisson's ratio of high-strength concrete in triaxial compression", Mag. Concrete Res., 59(1), 69-77.   DOI   ScienceOn
55 Nezamian, A., Al-Mahaidi, R. and Grundy, P. (2006), "Bond strength of concrete plugs embedded in tubular steel piles under cyclic loading", Can. J. Civil Eng., 33(2), 111-125.   DOI   ScienceOn
56 Pam, H.J. and Ho, J.C.M. (2001), "Flexural strength enhancement of confined reinforced concrete columns", Proc. Inst. Civil Eng. Struct. Build., 146(4), 363-370.   DOI   ScienceOn
57 Pam, H.J. and Ho, J.C.M. (2009), "Length of critical region for confinement steel in limited ductility highstrength reinforced concrete columns", Eng. Struct., 31(12), 2896-2908.   DOI   ScienceOn
58 Park, J.W., Hong, Y.K. and Choi, S.M. (2010), "Behaviors of concrete filled square steel tubes confined b carbon fiber sheets (CFS) under compression and cyclic loads", Steel Compos. Struct., 10(2), 187-205.   DOI
59 Paultre, P., Legeron, F. and Mongeau, D. (2001), "Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns", ACI Struct. J., 98(4), 490-501.
60 Petrus, C., Hamid, H.A., Ibrahim, A. and Parke, G. (2010), "Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners", J. Constr. Steel Res., 66(7), 915-922.   DOI   ScienceOn
61 Persson, B. (1999), "Poisson's ratio of high-performance concrete", Cement Concrete Res., 29(10), 1647-1653.   DOI   ScienceOn