• Title/Summary/Keyword: Concrete dam

Search Result 318, Processing Time 0.03 seconds

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Kartal, Murat Emre;Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.411-442
    • /
    • 2008
  • Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

Seismic Damage Analysis Of Concrete Gravity Dam Using ABAQUS (ABAQUS 소프트웨어를 이용한 콘크리트 중력댐의 지진손상해석)

  • Shin, Dong-Hoon;Nghia, Nguyen Trong;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.530-533
    • /
    • 2009
  • This study deals with 2D and 3D nonlinear seismic damage analysis of a concrete gravity dam using the finite element program ABAQUS and the concrete damaged plasticity model. 2D and 3D spillway sections of the dam are simulated. First the frequency analysis is conducted to compare the fundamental frequency and estimate the value of damping coefficient. Then the seismic analysis is conducted using the simulated ground acceleration motion. The relative displacement between the crest and bottom of the dam is obtained and compared for the maximum value and occurrence time. The results indicate that the plane-stress assumption gives similar results of maximum relative displacement and final damage distribution with 3D analysis.

  • PDF

Geometrical dimensions effects on the seismic response of concrete gravity dams

  • Sevim, Baris
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.269-283
    • /
    • 2018
  • This study presents the effects of geometrical dimensions of concrete gravity dams on the seismic response considering different base width/dam height (L/H) ratios. In the study, a concrete gravity dam with the height of 200 m is selected and finite element models of the dam are constituted including five different L/H ratios such as 0.25, 0.5, 0.75, 1.00, 1.25. All dams are modeled in ANSYS software considering dam-reservoir-foundation interaction. 1989 Loma Prieta earthquake records are applied to models in upstream-downstream direction and linear time history analyses are performed. Dynamic equilibrium equations of motions obtained from the finite element models of the coupled systems are solved by using Newmark time integration algorithm. The seismic response of the models is evaluated from analyses presenting natural frequencies, mode shapes, displacements and principal stresses. The results show that the L/H ratios considerably affect the seismic response of gravity dams. Also, the model where L/H ratio is 1.00 has more desirable results and most appropriate representation of the seismic response of gravity dams.

The Comparison of Behavior by Instrumentation and Numerical Analysis on Non-Weir Concrete Dam (콘크리트댐 비월류부 수치해석과 계측결과 비교)

  • 임정열;오병현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.392-395
    • /
    • 2003
  • In this study was compared with result of instrumentation and numeral analysis of non-weir of concrete dam to prepare a plan for total safety estimation method such as reliability estimation of numerical analysis result, characteristics of dam behavior and etc. The results of instrument analysis of displacement and stress on N.H.W.L was similar to that of numeral analysis.

  • PDF

Direct frequency domain analysis of concrete arch dams based on FE-(FE-HE)-BE technique

  • Lotfi, Vahid
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.285-302
    • /
    • 2004
  • A FE-(FE-HE)-BE procedure is presented for dynamic analysis of concrete arch dams. In this technique, dam body is discretized by solid finite elements, while the reservoir domain is considered by a combination of fluid finite elements and a three-dimensional fluid hyper-element. Furthermore, foundation rock domain is handled by three-dimensional boundary element formulation. Based on this method, a previously developed program is modified, and the response of Morrow Point arch dam is studied for various conditions. Moreover, the effects of canyon shape on response of dam, is also discussed.

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Seismic evaluation of cemented material dams -A case study of Tobetsu Dam in Japan

  • Arefian, Amir;Noorzad, Ali;Ghaemian, Mohsen;Hosseini, Abbas
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.717-733
    • /
    • 2016
  • Trapezoidal Cemented Sand and Gravel Dam, namely Trapezoid CSG, is a new type of dam. Due to lack of dynamic studies in the field of CSG dam, this research was performed to analyze Trapezoidal CSG dam using dynamic Finite element method with ABAQUS Software. To investigate possible earthquake-induced damages, fragility curves are plotted based on damage index, the length of the cracks created at the dam base and the area of cracked elements in the dam. The seismic analysis indicated that minimum and maximum tensions are generated in the heel and toe of the dam, respectively. According to the fragility curves, with increase in PGA, the possibility of the exceeding the defined limit state is increased. However, the rate of increment is significantly reduced after PGA=0.4 g. Also, the same result is achieved for the second limit state. The "area of cracked elements" is more conservative criterion than the "crack length at the dam base", especially at PGA<0.4 g. As conclusion, CSG dams, despite of being made of poor materials in comparison with concrete dams, show good resistance, and even in some situations, better performance than the weighted concrete dams.

Dynamic Behavior of Concrete Dam Constructed with Different Concretes in Mechanical Properties (물성이 다른 콘크리트로 축조된 콘크리트댐의 동적거동 특성)

  • Lim, Jeong-Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.43-50
    • /
    • 2004
  • A large concrete dam, of which construction work had not been continued for more than 20 years because of social problem, was investigated with emphasis on its seismic performance. Mechanical properties of the concrete dam material were estimated by performing uniaxial compression tests for obtained the samples from dam body. Borehole image Processing System (BIPS) was used to investigate the susceptible faults developed in the interface between old an new concretes. Using the results of several laboratory and field tests earthquake response analysis for the dam were done, The results of such investigation show that its physical and mechanical conditions are in a good condition, and the results earthquake response analysis imply that the dam, even it consists of two different concretes, show good seismic performance.

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.