• 제목/요약/키워드: Concrete corrosion

검색결과 1,235건 처리시간 0.032초

방청시멘트 도막철근의 역학적 특성 연구 (A Study on the Mechanical Characteristics of Anti-Corrosion polymer Cement Coated Rebar)

  • 오병환;이종렬;신도철;조윤구;김의성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.261-264
    • /
    • 1997
  • Recently, large scale concrete structures exposed to severe environment are increasingly built in various locations. The corrosion may severely affect the durability and service life of such a concrete structure. It is therefore, necessary to develop a method to enhance the corrosion resistance of a concrete. And the purpose of this study is to evaluate the characteristics of anti-corrosion polymer cement coated rebar. The corrosion resistance of a concrete with anti-corrosion coating can be identified through accelerated corrosion test. And the bond strength test of a concrete using anti-corrosion coating was also carried out.

  • PDF

철근부식상태에 따른 철근콘크리트 보의 슬립특성 (Slip Characteristics of Reinforced Concrete Beams to Corroded Steel State)

  • 권영웅;최봉섭;정용식
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.129-135
    • /
    • 1999
  • Reinforced concrete structures are constructed under the basic assumption of perfect bonding between steel and concrete. The corrosion of steel in the reinforced concrete beams results in the excessive cracks and gradual deterioration of concrete. This paper are concerned about the slip characteristics of reinforced concrete between steel and concrete. The accelerated test by external power supply was conducted with the three corrosion rates in the laboratory. As a result, it was obtained as follows: (1) the yield strength of steel was reduced according to corrosion states. (2) the equivalent steel area should be considered for detailed analysis. (3) According to the use of corroded steel or not, slip amounts between concrete and steel in test beams increased as the corrosion rate increased. These results can be explained from the bond loss between concrete and steel in test beams.

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

Examination on Required Cover Depth to Prevent Reinforcement Corrosion Risk in Concrete

  • Yoon, In-Seok
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.157-164
    • /
    • 2012
  • In first experiment series, this paper is devoted for examining progress of reinforcement corrosion due to carbonation in concrete and to quantify uncarbonation depth to protect reinforcement from corroding. The tolerance of cover depth should be considered in order to prevent carbonation-induced corrosion. From the relationship between the weight loss of reinforcement and corrosion current density for a given time, therefore, the tolerance of cover depth to prevent carbonation-induced corrosion is computed. It is observed that corrosion occurs when the distance between carbonation front and reinforcement surface (uncarbonated depth) is smaller than 5 mm.As a secondary purpose of this study, it is investigated to examine the interaction between carbonation and chloride penetration and their effects on concrete. This was examined experimentally under various boundary conditions. For concrete under the double condition, the risk of deterioration due to carbonation was not severe. However, it was found that the carbonation of concrete could significantly accelerate chloride penetration. As a result, chloride penetration in combination with carbonation is a serious cause of deterioration of concrete.

Bending characteristics of corroded reinforced concrete beam under repeated loading

  • Fang, Congqi;Yang, Shuai;Zhang, Zhang
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.773-790
    • /
    • 2013
  • Bending behaviors of corroded reinforced concrete (RC) beams under repeated loading were investigated experimentally. A total of twenty test specimens, including four non-corrosion and sixteen corrosion reinforced concrete beams, were prepared and tested. A numerical model for flexural and cracking behaviors of the beam under repeated loading was also developed. Effects of steel corrosion on reinforced concrete beams regarding cracking, mid-span deflection, stiffness and bearing capacity of corroded beams were studied. The impact of corrosion on bond strength as the key factor was investigated to develop the computational model of flexural capacity. It was shown from the experimental results that the bond strength between reinforcement and concrete had increased for specimen of low corrosion levels, while this effect was changed when the corrosion level was higher. It was indicated that the bearing capacity of corrosion beam increased even at a corrosion level of about 5%.

Corrosion of rebar in carbon fiber reinforced polymer bonded reinforced concrete

  • Bahekar, Prasad V.;Gadve, Sangeeta S.
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.247-255
    • /
    • 2019
  • Several reinforced concrete structures that get deteriorated by rebar corrosion are retrofitted using Carbon Fiber Reinforced Polymer (CFRP). When rebar comes in direct contact with CFRP, rebar may corrode, as iron is more active than carbon. Progression of corrosion of rebar in strengthened RC structures has been carried out when rebar comes in direct contact with CFRP. The experimentation is carried out in two phases. In phase I, corrosion of bare steel bar is monitored by making its contact with CFRP. In phase II, concrete specimens with surface bonded CFRP were casted and subjected to the realistic exposure conditions keeping direct contact between rebar and CFRP. Progression of corrosion has been monitored by various parameters: Half-cell potential, Tafel extrapolation and Linear Polarisation Resistance. On termination of exposure, to find residual bond stress between rebar and concrete, pull-out test was performed. Rebar in contact with CFRP has shown substantially higher corrosion. The level of corrosion will be more with more area of contact.

Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides

  • Gerengi, Husnu;Kocak, Yilmaz;Jazdzewska, Agata;Kurtay, Mine
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.161-169
    • /
    • 2017
  • Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete structures. The electrochemical impedance of reinforcing steel in diatomite- and zeolite-containing concrete exposed to sodium chloride was assessed. Chemical, physical and mineralogical properties of three concrete samples (20% diatomite, 20% zeolite, and a reference containing neither) were correlated with corrosion investigations. The steel-reinforced samples were exposed to 3.5% NaCl solution for 500 days, and measured every 15 days via EIS method. Results indicated that porosity and capillary spaces increase the diffusion rate of water and electrolytes throughout the concrete, making it more susceptible to cracking. Reinforcement in the reference concrete was the most corroded compare to the zeolite and the diatomite samples.

직경별 부식 철근과 콘크리트 간의 부착강도에 관한 연구 (Bond Strength between Steel and Concrete with Different Diameters in the Same Corrosion Rate)

  • 두여준;장인동;이혜린;이종구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.190-191
    • /
    • 2020
  • The bonding of steel bar to concrete is closely related to the roughness and corrosion degree of steel bar surface. The accelerated corrosion of concrete specimens with different reinforcement diameters was carried out in this test. Through the pullout test of the corroded concrete specimens, the relationship between the bond stress and the displacement of the corroded concrete specimens under the corresponding corrosion degree was obtained. The bond stress of reinforced concrete with different size and corrosion degree are compared and analyzed to find out the influence of corrosion on the bonding property of reinforced concrete.

  • PDF

철근콘크리트 구조물의 철근부식에 관한 실험 연구 (An Experimental Study on Steel Bar Corrosion of Reinforced Concrete Structure)

  • 채영석;최일윤;민인기
    • 한국안전학회지
    • /
    • 제28권6호
    • /
    • pp.29-35
    • /
    • 2013
  • The purpose of this study is to investigate the steel bar corrosion and degree of reinforced concrete bridge, and analyze the cause of corrosion occurrence. Therefore they could ensure the durability and stability as to suggest the corrosion prevention of reinforced concrete structure. To study the corrosion state reinforced concrete structure, We investigate the cover of concrete, the compressive strength by schmidt hammer, the neutralization test of site, the compressive strength of core and the measurement of neutralized depth. As the results of test, the corrosion-grade of reinforced concrete structure which the degree of corrosion is 3, 4 degree get to 18% in the used time of 40 years and the time elapsed of 25 years. Therefore the corrosion of steel bar give rise to public discussion. The degree of corrosion is serious, and the neutralization come to the cover of concrete.

Galvanic Sensor System for Detecting the Corrosion Damage of the Steel in Concrete

  • Kim, Jung-Gu;Park, Zin-Taek;Yoo, Ji-Hong;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제3권3호
    • /
    • pp.118-126
    • /
    • 2004
  • The correlation between sensor output and corrosion rate of reinforcing steel was evaluated by laboratory electrochemical tests in saturated $Ca(OH)_2$ with 3.5 wt.% NaCl and confirmed in concrete environment. In this paper, two types of electrochemical probes were developed: galvanic cells containing of steel/copper and steel/stainless steel couples. Potentiodynamic test, weight loss measurement, monitoring of open-circuit potential, linear polarization resistance (LPR) measurement and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of steel bar embedded in concrete. Also, galvanic current measurements were conducted to obtain the charge of sensor embedded in concrete. In this study, steel/copper and steel/stainless steel sensors showed a good correlation in simulated concrete solution between sensor output and corrosion rate of steel bar. However, there was no linear relationship between steel/stainless steel sensor output and corrosion rate of steel bar in concrete environment due to the low galvanic current output. Thus, steel/copper sensor is a reliable corrosion monitoring sensor system which can detect corrosion rate of reinforcing steel in concrete structures.