• Title/Summary/Keyword: Concrete core

Search Result 772, Processing Time 0.023 seconds

Shear Strength of Vertical Joints in Precast Concrete Panel with Shear Key (전단키를 갖는 프리캐스트 콘크리트 패널 수직접합부의 전단강도)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.151-158
    • /
    • 2019
  • A concrete core is used widely as lateral stability systems in high-rise modular buildings. As an alternative to traditional cast in-situ core, the precast concrete(PC) method can accelerate the construction of reinforced concrete cores. A core composed of precast elements differs from a in-situ core in having connections between the precast elements. The typical vertical connection between PC panels is consisted of shear keys, loop bars, lacer bars and grout. In this study, the effect of vertical connection components on shear strength is investigated experimentally. The test results show that the contribution to the shear strength is greater in order of grout strength, shear keys, lacer bars and loop bars. In addition, the numerical models to estimate the shear strength according to two crack patterns in the vertical joint of the PC panels are derived. The feasibility of the numerical models is evaluated by comparing the estimated shear strength and the test results.

Flexural Behaviors of High Performance Hollow Core Slabs with Upper Strands (상부강선을 갖는 고성능 중공슬래브의 휨거동)

  • 김인규;박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • Hollow core slabs generally have not been used for a bridge or a parking slab in Korea. In this study, high performance hollow core slabs, which have been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were pre-tensioned with ten strands of 1/2 inch diameter at the lower of slab and four strands of 1/2 inch diameter at the upper of slab, and cast with 80 mm deep topping concrete. Tested hollow core slabs showed ductile failure behaviors which were conformed to the current Ultimate Strength Design Method for a span of 10m up to the live load of 1,000 kgf/㎡. The rectangular md round shear cotters which were used for the composite action between precast and topping concrete, developed sufficient strengths because cracking, even micro had not been developed at the end of slabs up to the pure flexural tensile failure.

Shear Performance Evaluation of the Joint between Hollow Core Slabs (Hollow core 슬래브 간 접합부의 전단저항성능 평가)

  • Hong, Geon-Ho;Baek, Jong-Sam;Park, Hong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.94-101
    • /
    • 2010
  • Recently, the interest of precast concrete is increased for rapid construction in construction fields. Experimental study about the shear performance of the joint between hollow core slabs which have internal core to reduce their weight was performed. Main test variables were thickness of the topping concrete and existence of the wiremesh. Total 8 specimens including 4 in-plane shear and 4 out of plane shear were tested. Test results were analyzed in terms of cracking load, failure load, failure aspect, stiffness and ductility, and compared its design load to develop optimum design details. Test results indicated that the shear performance of the non-shrinkage mortar specimen was similar to that of 30mm thickness topping concrete specimen, and the effect of wiremesh reinforcement did not affect the failure load or stiffness of the specimens but the increase of ductility. And this paper presents the comparison results of the test results and design load to provide the optimum detail of the joint design between the hollow core slabs.

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

Reinforced concrete core-walls connected by a bridge with buckling restrained braces subjected to seismic loads

  • Beiraghi, Hamid
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • Deflection control in tall buildings is a challenging issue. Connecting of the towers is an interesting idea for architects as well as structural engineers. In this paper, two reinforced concrete core-wall towers are connected by a truss bridge with buckling restrained braces. The buildings are 40 and 60-story. The effect of the location of the bridge is investigated. Response spectrum analysis of the linear models is used to obtain the design demands and the systems are designed according to the reliable codes. Then, nonlinear time history analysis at maximum considered earthquake is performed to assess the seismic responses of the systems subjected to far-field and near-field record sets. Fiber elements are used for the reinforced concrete walls. On average, the inter-story drift ratio demand will be minimized when the bridge is approximately located at a height equal to 0.825 times the total height of the building. Besides, because of whipping effects, maximum roof acceleration demand is approximately two times the peak ground acceleration. Plasticity extends near the base and also in major areas of the walls subjected to the seismic loads.

Studies on the Evaluation Method of Strength Comparison for Application in Joint Separation Test Body to Structural Concrete (구조체 콘크리트에 접합분리 시험체의 적용을 위한 강도비교에 관한 실험적 연구)

  • Kim, Seong-Deok;Lee, Seon-Ho;Jung, Kwang-sik;Paik, Min-su;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.79-82
    • /
    • 2008
  • It has been reported that destruction test by core collection is the most reliable of the structural concrete strength in present building construction field. But it causes low efficiency by damage and cutting in structure due to the core collection. It also has some problems in repairing. Additionally in case of strength test with management specimen, different environment compared to the structure environment cause problems about estimation precise structure strength. Therefore, it is required to develop structure direct strength test that has test values and credibility above the ones obtained by core specimen collection strength test and seasonal specimen test to suggest a reasonable and practical management method of structural concrete.

  • PDF

Comparative Study on the Hear of Hydration and Core Strength of the Underwater Non-Segregation Concrete Using Different Category of Cements (시멘트의 종류에 따른 수중불분리 콘크리트의 온도이력 및 코아강도의 특성에 관한 연구)

  • 이승훈;최응규;윤영수;원종필;노윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.380-386
    • /
    • 1996
  • This paper presents the history of heat hydration and the core strength of underwater non-segregation concrete. Three types of cements including Type I, Type V and low-heat cement have been used to make the mass specimens for measurement of heat of hydration and also for coring. Two environments of ambient and underwater conditions have been accounted for the comparison of producing the heat of hydration and for the assessment of core strength in respect to the test specimens made under normal practice.

  • PDF

An Experimental Study on Hydration Heat and Strength Properties Concrete with High Volume Fly-Ash (플라이애시 콘크리트의 수화발열 특성과 압축강도 특성에 관한 실험적 연구)

  • 김우상;김광기;백민수;김우재;정재영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash at the same time was used. It was used that the adiabatic temperature rise of concrete about the mass member which bad been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive streneth's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the tine to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

  • PDF

A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

Air-void Analysis of Deteriorated Jointed Concrete Pavement Using Concrete Core Specimen (코어 시편을 이용한 열화된 줄눈콘크리트 포장의 공극구조 분석)

  • Choi, Pan-Gil;Jeong, Beom-Seok;Yun, Kyong-Ku;Kwan, Soo-Ahn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.253-254
    • /
    • 2009
  • This study was conducted to estimate deterioration reason of jointed concrete pavement. Image analysis tests were performed according to ASTM C 457 using concrete core specimens. Durability factors were estimated according to spacing factor, which is related with air content and air-void information. Test results show that spacing factors of most specimens were estimated above 250$\mu$m so that investigated concrete pavement has the problem of freeze and thawing resistance.

  • PDF