• 제목/요약/키워드: Concrete construction

Search Result 8,320, Processing Time 0.032 seconds

An Assessment of Bonding Shear Performance of Ultra-high-performance Concrete Regarding Interface Treatment (표면처리방법에 따른 초고성능 콘크리트의 전단부착성능 평가 연구)

  • Jang, Hyun-O;Park, Jin-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.81-82
    • /
    • 2016
  • The present study aims to derive optimal interface treatment conditions for emulating a monolithic construction. The joints in this construction are formed through the bonding shear evaluation method during the placement of ultra-high-performance concrete (UHPC) and normal strength concrete (NSC). The evaluation items include push-off tests for homogeneous UHPC + UHPC and heterogeneous NSC + UHPC. The experimental samples comprised a monolithic placement as the baseline, two levels for the separated placement according to the compression strength of concrete, and five levels for the interface treatment. The increase in the number of grooves and their cross-sectional areas only slightly influenced the bonding shear performance. The optimal interface treatment method for the homogeneous UHPC + UHPC construction grooves was at least 30mm. The heterogeneous NSC + UHPC construction should utilize waterjet roughening to expose the aggregate for the increased roughness.

  • PDF

An Experimental Study on the Flexural Strength of Construction Joints of RC Slabs at Widened Bridges (교량 확폭시 RC 상판 접합부의 휨강도에 관한 실험적 연구)

  • 배인환;심종성;장동일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.188-193
    • /
    • 1993
  • In widening of existing bridges, construction joints between old new parts of concrete slabs are subjected to repeated traffic loads during placing and curing of concrete. Therefore, the main focus of this paper is given to examine several construction methods of bridge widening. As a result, the occurrence of cracks in vibrating specimen is faster than non-vibrating one, but the difference between flexural strength and ultimate moment was negligible. Also, it shows the same result in other construction method, say direct and non-shrinkage joint specimen.

  • PDF

A Study on Field Application of Early Strength Concrete for Construction Work Period Reduction (조강콘크리트를 사용한 구조물의 공기단축 관련 현장적용에 관한 연구)

  • Kim, Min-Jeong;Kim, Dong-Jin;Lee, Sang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.155-156
    • /
    • 2009
  • In this study, changes of work process, construction machinery, and construction cost caused by construction work period reduction using early strength concrete is considered for its field application.

  • PDF

Development of Wave Breaking Construction Method for Shore Protection using New Type of Precast Preforated Concrete Block (프리캐스트 유공식 호안블록을 이용한 소파감쇄 신공법개발)

  • 이주호;박광순;박경래;염종윤;배한욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.743-748
    • /
    • 1997
  • In this paper, a new type of precast perforated concrete block is presented to be used in the construction of a step seawall. The overtopping rate of the perforated step seawall is lower than that of the traditional non-perforated step seawall. In construction stage, the cost of total construction of the perforated block is cheaper than that of traditional block. The new type of perforated block may be used as an alternative for shore protection facility.

  • PDF

A Basic Studies of the Concrete Crack Reduction-type Structure for Crack Reduction Flaw (구조체 균열 하자 저감을 위한 균열 저감형 콘크리트의 기초적 연구)

  • Park, Hee-Gon;Lee, Ji-Hwan;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.197-198
    • /
    • 2016
  • The root cause of the crack flaw occurred in construction. This crack is represented by a construction flaw occurs in the concrete structure. Therefore, we introduce the basic properties for the type of concrete to crack reduction measures to minimize the causes flaw this paper.

  • PDF

An Experimental Study on Corrosion Resistance of Concrete Using Sea Sane) (해사를 사용한 콘크리트의 내부식 성능에 관한 실험적 연구)

  • 배수호;윤상대;신의균;박광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.152-157
    • /
    • 1994
  • Due to the recent shortage of river sand resulting from a rapid growth of concrete construction, sea sand is increasingly used in stead. It is, however, well noted that non-washed sea sand used in reinforced concrete causes to corrode reinforcing steel and to incur cracks in concrete, and thus eventually result in damage to concrete. In this study, therefore, measeres that increase the quality of concrete were used to protect the reinforcing steel against corrosion in reinforced concrete construction, and then the corrosion resistance of reinforcing steel compared and analyzed from low quality concrete to high quality concrete.

  • PDF

Use of Recycled Brick Masonry Aggregate (RBMA) and Recycled Brick Masonry Aggregate Concrete (RBMAC) in Sustainable Construction

  • Tara L. Cavalline;David C. Weggel;Dallas E. Schwerin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.390-390
    • /
    • 2013
  • Use of recycled aggregates in portland cement concrete construction can offer benefits associated with both economy and sustainability. Testing performed to date indicates that RBMA can be used as a 100% replacement for conventional coarse aggregate in concrete that exhibits acceptable mechanical properties for use in structural and pavement elements, including satisfactory performance in some durability tests. RBMAC is currently not used in any type of construction in the United States. However, use of RBMAC could become a viable construction strategy as sustainable building practices become the norm. Rating systems such as LEED offer points for reuse of building materials (particularly on-site) and use of recycled materials. If renovations at an existing facility call for the demolition of existing brick masonry constructions, the rubble could be included as RBMA in new concrete pavement, sidewalks, or curb and gutter. Other potential uses for RBMAC could include those in the precast concrete industry, particularly in architectural precast concrete applications. In addition to providing acceptable strength and economy, the color of RBMA could be an attractive component of architectural precast concrete panels or other façade components. This paper explores the feasibility of use of RBMAC in several types of sustainable construction initiatives, based upon the findings of previous work with RBMAC produced from construction and demolition waste from a case study site. Guidance for obtaining and using RBMA is presented, along with a summary of material properties of RBMAC that will be useful to construction professionals.

  • PDF

Stress-transfer in concrete encased and filled tube square columns employed in top-down construction

  • Kim, Sun-Hee;Yom, Kyong-Soo;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.63-77
    • /
    • 2016
  • Top-down construction is a construction technique in which pit excavation and structure construction are conducted simultaneously. Reducing construction time and minimizing noise and vibration which affect neighboring structures, the technique is widely employed in constructing downtown structures. While H-steel columns have been commonly used as core columns, concrete filled steel tube (CFT) columns are at the center of attention because the latter have less axial directionality and greater cross-sectional efficiency than the former. When compared with circular CFT columns, square CFT columns are more easily connected to the floor structure and the area of percussion rotary drilling (PRD) is smaller. For this reason, square CFT columns are used as core columns of concrete encased and filled square (CET) columns in underground floors. However, studies on the structural behavior and concrete stress transfer of CET columns have not been conducted. Since concrete is cast according to construction sequence, checking the stress of concrete inside the core columns and the stress of covering concrete is essential. This paper presents the results of structural tests and analyses conducted to evaluate the usability and safety of CET columns in top-down construction where CFT columns are used as core columns. Parameters in the tests are loading condition, concrete strength and covering depth. The compressive load capacity and failure behavior of specimens are evaluated. In addition, 2 cases of field application of CET columns in underground floors are analyzed.

Predicting the CO2 Emission of Concrete Using Statistical Analysis

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jang, Min-Ho;Park, Hyo-Seon
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Accurate assessment of $CO_2$ emission from buildings requires gathering $CO_2$ emission data of various construction materials. Unfortunately, the amount of available data is limited in most countries. This study was conducted to present the $CO_2$ emission data of concrete, which is the most important construction material in Korea, by conducting a statistical analysis of the concrete mix proportion. Finally, regression models that can be used to estimate the $CO_2$ emission of concrete in all strengths were developed, and the validity of these models was evaluated using 24 and 35MPa concrete data. The validation test showed that the error ratio of the estimated value did not exceed a maximum of 5.33%. This signifies that the models can be used in acquiring the $CO_2$ emission data of concrete in all strengths. The proposed equations can be used in assessing the environmental impact of various construction structural designs by presenting the $CO_2$ emission data of all concrete types.

Requirements analysis for production of freeform concrete segments. (비정형 콘크리트 부재 생산을 위한 요구조건 분석)

  • Sung, Soojin;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.68-69
    • /
    • 2014
  • Production of freeform concrete segments use various molds because of the unique shape of it unlike common concrete segments. As a result, the mold for freeform concrete segments cannot be reused. Therefor, cost overrun is occurred by needs of more time and manpower to produce the freeform concrete segments compared with common concrete segments. To prevent the cost overrun, a new production method for the freeform concrete segments is needed to develop and the requirements for it should be analyzed before. Therefor, the aim of this study is requirements analysis for production of freeform concrete segment. The requirements of production of freeform concrete segments and form for it is analyzed in this study. The result of this study would be used to suggest the new production method of freeform concrete segments.

  • PDF