• 제목/요약/키워드: Concrete cone breakout Strength

검색결과 7건 처리시간 0.022초

Experimental and numerical study of headed bars embedded in RC members under tension

  • Santana, Paulo F.M.;Silva, Patricia C.S.;Ferreira, Mauricio P.;Bezerra, Luciano M.;Oliveira, Marcos H.
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.531-546
    • /
    • 2022
  • Headed bars are often used when there is insufficient space for a straight or curved bar to be fully developed to ensure the transference of forces between steel and concrete in several types of connections between structural members. In such cases, the concrete breakout strength of the headed bars can be a critical point of the design and must be considered appropriately. This paper evaluates the tensile strength of headed bars embedded in reinforced concrete members, failing due to concrete breakout. Four experimental tests on headed bars embedded in slender concrete members are presented and discussed, showing that strength previsions from the design codes can be significantly conservative as they ignore the contribution from the flexural reinforcement. 3D finite element models were developed using Abaqus Unified FEA to simulate the tested specimens, and it was observed that they were able to reproduce the formation of the concrete cone accurately, besides the response and resistance observed in tests. Furthermore, the experimental, numerical, and design code resistances are compared and discussed. A new equation to evaluate the concrete cone strength of the tested headed bars is proposed, which takes into account parameters not explicitly considered in the current design equations.

익스팬션 앵커의 콘크리트 콘 파괴강도 평가 (Evaluation of Concrete Cone Breakout Strength of Expansion Anchors)

  • 김성용;김규석
    • 한국강구조학회 논문집
    • /
    • 제15권6호통권67호
    • /
    • pp.649-660
    • /
    • 2003
  • 본 논문은 비균열 무근콘크리트에 매입된 익스팬션 앵커의 인발내력을 평가하기 위한 실험적 연구이다. 앵커의 인발실험은 익스 팬션 앵커에 해당하는 고하중 앵커와 웨지 앵커를 대상으로 대상으로 삽입깊이, 콘크리트 강도 및 연단거리을 변수로 하여 실험을 수행하였다. 후시공 앵커의 설계식은 EOTA와 ACI 318-02 규준의 근거가 되는 CCD 방법이 제안되어 있다. 본 연구에서는 비균열 무근콘트리트에 매입된 익스팬션 앵커의 콘크리트 콘 파괴강도에 관한 설계식을 분석하였으며, 고하중 앵커와 웨지 앵커의 실험값을 CCD 방법의 예측값과 비교 평가하였다. 실험 결과, 비균열 무근콘크리트에 매입된 웨지 앵커의 콘크리트 콘 파괴 시 공칭강도의 계수는 CCD 방법에 근거하여 9.94임을 알 수 있었다. 고하중 앵커의 콘크리트 콘 파괴 시 공칭강도의 계수는 CCD 방법에 근거하여 11.50임을 알 수 있었다.

Prediction of Shear Strength for Large Anchors Considering the Prying Effect and Size Effect

  • Kim, Kangsik;Lee, Kwangsoo;An, Gyeonghee
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.451-460
    • /
    • 2016
  • An anchorage system is necessary in most reinforced concrete structures for connecting attachments. It is very important to predict the strength of the anchor to safely maintain the attachments to the structures. However, according to experimental results, the existing design codes are not appropriate for large anchors because they offer prediction equations only for small size anchors with diameters under 50 mm. In this paper, a new prediction model for breakout shear strength is suggested from experimental results considering the characteristics of large anchors, such as the prying effect and size effect. The proposed equations by regression analysis of the derived model equations based on the prying effect and size effect can reasonably be used to predict the breakout shear strength of not only ordinary small size anchors but also large size anchors.

비균열·무근콘크리트의 단일앵커 전단내력 평가 (Shear Strength of Single Anchors in Uncracked and Unreinforced Concrete)

  • 김성용;김규석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.171-181
    • /
    • 2003
  • 비균열 무근 콘크리트에 매입된 단일앵커는 연단거리와 콘크리트 강도에 따라 콘크리트 단부파괴, 콘크리트 부서짐파괴, 앵커파괴가 발생한다. 본 연구에서는 연단거리와 콘크리트 강도에 따라 콘크리트 단부파괴, 콘크리트 부서짐파괴, 앵커파괴 발생시 단일앵커의 전단내력평가를 목적으로 한다. 이를 위하여 ACI 318-02와 EOTA 기준의 근거인 CCD (Concrete Capacity Design) 방법과 기존의 앵커 설계기준인 ACI 349-90(45-Degree Cone Method)에 의한 예측값과 실험값을 서로 비교 평가하였다.

An Experimental Study of Reinforced Concrete Beams with Closely-Spaced Headed Bars

  • Lam, Kah Mun;Kim, Woo-Suk;Van Zandt, Michael;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권2호
    • /
    • pp.77-85
    • /
    • 2011
  • The use of headed bars as opposed to standard 90- or 180-degree hooked bars in beam ends, beam-column joints or other steel congested areas for anchorage and bond has become more favorable due to the fact that steel congestion is often created by large bend diameters or crossties. This research mainly focuses on evaluating the code provisions regarding the use of headed bars. Nine simply supported rectangular concrete beams with headed longitudinal reinforcement were tested under a four-point monotonic loading system. The design clear spacing, which varies from 1.5 to 4.25 times the bar diameter, was the only parameter for the experimental investigation. The test results showed that the closely-spaced headed bars were capable of developing to full yield strength without any severe brittle concrete breakout cone or pullout failure. Bond along the bar was not sufficient due to the early loss of concrete integrity. However, the headed bars were effective for anchorage with no excessive moment capacity reduction. This implies that the clear spacing of about 2 times the bar diameter for headed bars may be reasonable to ensure the development of specified yield strength of headed bars and corresponding member design strength.

유효묻힘깊이에 따른 후설치앵커의 인발성능평가 (An Performance Evaluation of Post-installed Anchor according to the Effective Embedment Length)

  • 허무원;채경훈;안영승;박태원
    • 교육시설 논문지
    • /
    • 제26권4호
    • /
    • pp.19-25
    • /
    • 2019
  • Concrete wedge anchor is one of structural components to transfer load of an object attached to a primary structure. Recently, as retrofitting concrete structure is becoming a main issue, mechanical capacity of the anchor should be secured enough. In spite of the structural safety of Cast-in-place anchor, Post-installed anchor is more widely used with ease of placement or change of construction method. However, the post-installed anchors domestically produced have excessive coefficient of variation over 15% of ultimate tensile strength, which yields deteriorated quality in tensile strength. In this research, tensile strength test of anchors, which have improved sleeve and header and produced by a domestic company, was conducted for two variables, concrete strength and effective embedment depth. As a result, enough coefficients of variations were secured in all specimens. Also, in comparison to foreign products, the domestic ones have equal or higher performance.

Development of a retrofit anchor system for remodeling of building exteriors

  • Yeun, Kyu Won;Hong, Ki Nam;Kim, Jong
    • Structural Engineering and Mechanics
    • /
    • 제44권6호
    • /
    • pp.839-856
    • /
    • 2012
  • To enable remodeling of the exterior of buildings more convenient, such finishing materials as curtain walls, metal panels, concrete panels or dry stones need to be easily detached. In this respect, this study proposed a new design of the slab for the purposes. In the new design, the sides of the slab were properly modified, and the capabilities of anchors fixed in the modified slab were experimentally tested. In details, a number of concrete specimens with different sizes and compressive strengths were prepared, and the effect of anchors with different diameters and embedment depths applied in the concrete specimens were tested. The test results of the maximum capacities of the anchors were compared with the number of current design codes and the stress distribution was identified. This study found that the embedment depth specified in the current design code (ACI318-08) should be revised to be more than 1.5 times the edge distance. However, with the steel sheet reinforcement, the experiment acquired higher tensile strength than the design code proposed. In addition, for two types of specimens in the tensile strength experiment, the current design code (ACI 318-08) is overestimated for the anchor depth of 75 mm. This study demonstrated that the ideal breakout failure was attainable for the side slot details of a slab with more than 180 mm of a slab thickness and less than 75 mm of an anchor embedment depth. It is expected that these details of the modified slab can be specified in the upgraded construction design codes.