• Title/Summary/Keyword: Concrete bridge deck

Search Result 461, Processing Time 0.032 seconds

Development of Probabilistic Prediction System for Remaining Life of Reinforced Concrete Bridge Decks (도로교 콘크리트 바닥판의 합리적인 수명 평가 및 예측시스템 개발)

  • 오병환;최영철;이준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.637-640
    • /
    • 2002
  • The deterioration of RC deck slabs has been a serious problem and high portion of budget has been a spent for repair and strengthening of deck slab. The concrete deck slabs are subject to direct application of vehicle loading and accumulation of fatigue damage. Besides, various environmental causes. In this paper, an probabilistic study is carried out to predict exact load effects and structural capacity of deck slab during its service life, and estimate an appropriate remaining life of deck slab. To achieve this purpose the live load model is developed using by influence line including deterioration of deck slab, and deterioration model of bridge deck slab is developed. In addition, the fatigue life of reinforced concrete deck slabs considering corrosion of reinforcement are estimated based on experimental formula. This study will help rational decisions for the management and repair of reinforced concrete deck slabs.

  • PDF

Quality Control Recommendation with Waterproofing Membrane Type of Waterproofing System for Concrete Bridge Decks (계열별 교면 방수시스템의 품질관리 지침(안) 고찰)

  • 이병덕;박성기;심재원;정해문;김광우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.367-372
    • /
    • 2002
  • The waterproofing systems of concrete bridge deck are installed under the complex circumstances, such as traffic loading, weather, and the condition of the deck concrete. For assuring the effectiveness of waterproofing system, the materials and the construction method and timing ought to be suitably selected with the procedures of waterproofing and the system has to ensure the economical performances. First of all, we discussed whether the quality and performance criteria for highway bridge deck are resonable or not through the investigation of domestic and foreign criteria. The basic properties of waterproofing membranes on market and the performance of waterproofing systems of concrete bridge deck have also been investigated in the view of the damages frequently reported from job site. In this way, the causes and measures of damages, the guidelines of design, construction, quality control, and maintenance, the test methods and criteria of membranes and waterproofing system, are proposed.

  • PDF

Relative Permittivity of Damaged Concrete Bridge Deck According to the Weather Conditions : A Case Study (기상조건에 따른 손상 교량 바닥판의 상대유전율 변화 고찰)

  • Rhee, Ji-Young;Choi, Jae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.209-215
    • /
    • 2017
  • Ground Penetrating Radar (GPR) was applied to an evaluation of the concrete condition of bridge decks with asphalt concrete. Deterioration was considered to have occurred when the relative permittivity of a concrete-faced asphalt concrete overlay showed more than 12. The relative permittivity of concrete varied considerably with the levels of porosity and water. In this study, GPR tests were carried out to determine the influence of weather and concrete condition on the relative permittivity for the research subject of an overlaid concrete bridge deck in public service. According to the test results, if bridge decks are in good condition, the relative permittivity of the top concrete of a bridge deck exhibited a normal distribution. After the deck concrete deteriorated, the relative permittivity varied with the amount of penetrated water according to the weather condition and deteriorated status of deck concrete.

Field-Observed Cracking of Paired Lightweight and Normalweight Concrete Bridge Decks

  • Cavalline, Tara L.;Calamusa, Jeremy T.;Kitts, Amy M.;Tempest, Brett Q.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • Research has suggested that conventional lightweight concrete can offer durability advantages due to reduced cracking tendency. Although a number of publications exist providing the results of laboratory-based studies on the durability performance of lightweight concrete (with lightweight coarse aggregate) and internally cured concrete (using prewetted lightweight fine aggregate), far fewer field studies of durability performance of conventional lightweight concrete bridge decks in service have been performed. This study was commissioned to provide insight to a highway agency on whether enhanced durability performance, and therefore reduced maintenance and longer lifecycles, could be anticipated from existing lightweight concrete bridge decks that were not intentionally internally cured. To facilitate performance comparison, each lightweight bridge deck selected for inclusion in this study was paired with a companion normalweight bridge deck on a bridge of similar structural type, deck thickness, and geometric configuration, with similar age, traffic, and environmental exposure. The field-observed cracking of the decks was recorded and evaluated, and crack densities for transverse, longitudinal, and pattern cracking of the normalweight and lightweight deck in each pair were compared. Although some trends linking crack prevalence to geographic location, traffic, and age were observed, a distinct difference between the cracking present in the paired lightweight and normalweight bridge decks included in this study was not readily evident. Statistical analysis using analysis of covariance (ANCOVA) to adjust for age and traffic influence did not indicate that the type of concrete deck (lightweight or normalweight) is a statistically significant factor in the observed cracking. Therefore, for these service environments, lightweight decks did not consistently demonstrate reduced cracking.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Optimum Evaluation of PS Concrete Deck and High Strength Two Plate Girder System (PS 콘크리트 바닥판 및 고강도 2주형 거더 시스템의 최적설계평가)

  • 박태훈;박문호;조창근;권민호;남유석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.185-192
    • /
    • 2003
  • This study presents the Optimum Evaluation of PS Concrete Deck and High Strength Two Plate Girder System. Recently, for the simplification of structure and the long length of bridge, a small number girder bridge which minimized a number of girder by two is much designed and constructed. For the structural analysis, a finite element formulation considering with even the matter of torsion in the three-dimensional problem is presented. And connectively, for the design of optimum section, an algorithm of optimum design is developed. The section of a small number girder bridge which constituted of two girders and PS Concrete Deck is optimized by using optimum program developed in this study. and two girders bridge refered in this study is proved a efficiency and a economy by being compared and checked to the general plate girder bridge with five girder and Reinforced Concrete Deck.

  • PDF

Evaluation of Fatigue Performance of RC Deck Slabs by 80 MPa High-Strength Concrete (80 MPa급 고강도 콘크리트를 적용한 RC 바닥판의 피로 성능 평가)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Yoo, Dong-Min;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.66-72
    • /
    • 2017
  • Recently, the use of high-strength concrete is increasing due to the trend of constructing high-rise and long span structures. The benefit of using the high-strength concrete is that it increases the durability and strength while it reduces the cross-sectional area of the bridge deck slabs. Moreover, it offers more safety as these bridge deck slabs applying high-strength requires strict structural performance verification. In this study, the fatigue performance of the bridge deck slabs applying 80 MPa high-strength concrete was verified through various experiments. The experimental results showed that the specimens satisfy the conditions of flexural strength, punching shear strength, deflection and cracking. In conclusion, the bridge deck slabs designed by 80 MPa high-strength concrete are enough safe despite of its low thickness.

A Static Test of Concrete Barrier on Bridge Deck (교량 바닥판의 콘크리트 난간에 대한 정적 실험)

  • Kang, Jun-Wook;Lee, Jae-Hoon;Woo, Kwang-Sung;Ahn, Sang-Sub;Lee, Il-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.33-36
    • /
    • 2004
  • The current Korea bridge design specifications have no provisions about concrete Barrier. And there are no test results of registence strength of the concrete barrier at the vehicle collision sites. This paper reports experimental results of concrete barrier on bridge deck conctructed by standard drawing of SB5 grade. Eight specimens were tested under static test. The specimens are divided by two groups (D-series and B-series). D-series is to show failure pattern of bridge deck. B-series is to show failure pattern of concrete Barrier. The test results compared with calculation results using Yield-Line theory of AASHTO LRFD Bridge Design Specifications.

  • PDF

Numerical Investigation on Cracking of Bridge Deck Slabs with Latex Modified Concrete Overlays (라텍스 개질 콘크리트 교량 교면 포장부 균열에 대한 수치해석 연구)

  • Choi, Kyoung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Latex modified concrete (LMC) exhibits improved material properties including high tensile strength and durability compared with conventional concrete, and hence LMC has been used as protective layers over the bridge deck slabs to increase their service life with underlying assumption of excellent bond behavior between the LMC overlay and the concrete substrate. In this study, the effect of the primary parameters of the concrete substrate (i.e., shrinkage, stiffness and cracking capacity) as well as the LMC overlay thickness on the probability of cracking of the bridge deck slabs using LMC overlays was investigated by carrying out the finite element analysis that simulated the bond behavior of LMC overlays on normal strength concrete (NSC) and HPC bridge deck slabs. Based on the results of the numerical analysis, it is concluded that the relatively high shrinkage strains and stiffness of HPC slabs can increase its probability of cracking in bridge deck slabs using LMC overlay.