• 제목/요약/키워드: Concrete Structures Repair

검색결과 366건 처리시간 0.022초

구조 보강재와 피보강재 접합경계면의 역학적 특성에 관한 해석적 연구 (Numerical Analysis of Interfacial Fracture Behavior in Repaired Structures.)

  • 박진완;신승교;임윤묵;김문겸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.471-474
    • /
    • 1999
  • An interface always appears when a repair is applied to an aged infrastructure system for repair. These repaired structures have the high chance to fail along the interface because of the stress concentration/discontinuity along the interface. So, mechanical properties of the interface have much influence on the behavior of repaired structure systems. In this paper, numerical tool that can predict effectively the interfacial fracture behavior is developed using axial deformation link elements, and this numerical technique is applied to the interfacial failure behavior. The results coincide with the ultimate strength and failure profile on the interfacial behavior of carbon fiber sheets for strengthening with epoxy adhesion. Thus, the mechanical behavior of the interface up to failure can be predicted using numerical technique with the proposed axial deformation link elements.

  • PDF

Seismic repair of exterior R/C beam-to-column joints using two-sided and three-sided jackets

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.17-34
    • /
    • 2002
  • The use of local two-sided and three-sided jacketing for the repair and strengthening of reinforced concrete beam-column joints damaged by severe earthquakes is investigated experimentally and analytically. Two exterior beam-column joint specimens ($O_1$ and $O_2$) were submitted to a series of cyclic lateral loads to simulate severe earthquake damage. The specimens were typical of existing older structures built in the 1960s and 1970s. The specimens were then repaired and strengthened by local two-sided or three-sided jacketing according to UNIDO Manual guidelines. The strengthened specimens ($RO_1$ and $RO_2$) were then subjected to the same displacement history as that imposed on the original specimens. The repaired and strengthened specimens exhibited significantly higher strength, stiffness and better energy dissipation capacity than the original specimens.

급냉 제강 슬래그의 대체율에 따른 수중 경화형 에폭시 모르타르의 공학적 특성 (The Engineering Properties of Underwater-Hardening Epoxy Mortar According to the Replacement Proportion of RCSS)

  • 곽은구;조성현;박상훈;배기선;장원석;김진만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.401-404
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performance are considered in structures. Epoxy mortar in the underwater used to the repair and reinforcement for durability. Epoxy mortar in the underwater-harding maked epoxy and filler. Filler is divided aggregate and powder system. Because aggregate take a matter too seriously to supply that alternation material is used to rapidly chilled steel slag. As result of study, it is possible that rapidly chilled steel slag can be applied for replacement materials about aggregate in epoxy mortar because the strength is not different.

  • PDF

콘크리트와 탄소섬유메쉬의 부착파괴 거동에 관한 실험적 연구 (An Experimental Study on the Bond Failure Behavior between Parent Concrete and CFM)

  • 오재혁;성수용;한병찬;윤현도;서수연;김태용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.965-970
    • /
    • 2002
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of the enhanced bond of CFM. Therefore if bond strength is sufficient, it will be expected to enhance reinforcement effect. If insufficient, reinforcement effect can not be enhanced because of bond failure between concrete and CFM. This study is to investigate the bond strength of CFM to the concrete using direct pull-out test and tensile-shear test. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

  • PDF

복합재료에 의하여 구속된 콘크리트의 응력-변형률 곡선 예측 (Stress-Strain Curve of Concrete Confined with both Steel Ties and FRP Composites)

  • 이정윤;황현복;오영준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.64-67
    • /
    • 2004
  • In recent years, the use of FRP composites to repair and strengthen existing reinforced concrete (RC) structures has been widely used. When the columns of existing RC structures are wrapped with FRP composites, the core concrete of such columns is confined not only by the FRP composites but also by the existing steel reinforcing ties (or spirals). Therefore, it is necessary to understand correctly the compressive response of concrete confined with both steel spirals and FRP composites in order to predict the behavior of such RC columns. This paper proposes a model to predict the compressive stress-strain curves of concrete confined with FRP and steel reinforcing ties.

  • PDF

해양콘크리트 구조물의 보수를 위한 전기방식의 응용에 대한 고찰 (A Study on the Application of Cathodic Protection for the Repair of Marine Concrete Structure)

  • 문한영;김성수;김홍삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.229-234
    • /
    • 1997
  • Recently many concrete structures have been deteriorated due to the corrosion of reinforcing steel caused by chloride attack. The chloride attack causes very rapid and serious deterioration. Therefore, It is necessary for highly reliable method to stop the corrosion. Especially, on damaged concrete, it is difficult to stop the progress of steel corrosion that has already occured in concrete. The indirect method of corrosion protection such as eliminating corrosion factors by coating would be hard to be expected for complete stop of corrosion. In this paper, we applied the cathodic protection to chloride attacked marine concrete structures and verified the effect in addition to application of cathodic protection.

  • PDF

Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.473-498
    • /
    • 2020
  • This paper presents a careful theoretical investigation into interfacial stresses in reinforced concrete foundation beam repairing with composite plate. The essential issue in the analysis of reinforced structures with composite materials is to understand the individual behaviour of each material and its interaction with the remaining ones. The present model is based on equilibrium and deformations compatibility requirements in and all parts of the repaired RC foundation beam, i.e., the reinforced concrete foundation beam, the composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions, By comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters such as the geometric characteristics and mechanical properties of the components of the repaired beam, as well as the geotechnical stresses of the soil are considered. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-concrete hybrid structures.

Tools for forensic analysis of concrete structures

  • Vecchios, Frank J.;Bentz, Evan C.;Collins, Michael P.
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.1-14
    • /
    • 2004
  • Computer-based analysis tools for forensic assessment of reinforced concrete structures are presented. The analysis tools, mostly in the form of nonlinear finite element procedures, are based on the concepts and formulations of the Modified Compression Field Theory. Relevant details regarding their formulation are provided. Development of realistic constitutive models and corroboration of the analysis procedures, through comprehensive experimental programs, are discussed. Also presented are graphics-based pre- and post-processors, which are of significant aid in structural modeling, input of data, and interpretation of analysis results. The details and results of a case study, illustrating the application and value of such analytical tools, are also discussed.

사용중인 구조물의 보강효과에 대한 해석적 연구 (Numerical Analysis on External Strengthening Effects in Aged Structures)

  • 신승교;임윤묵;김문겸;박동철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

콘크리트 보수용 라텍스 개질 시멘트계 보수 재료의 특성 (Performance of Latex Modified Cementitious Repair material for Concrete Structures)

  • 이상우;박성기;성상경;이재영;김완영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.289-292
    • /
    • 2006
  • The purpose of this study was to evaluate a performance of latex-modified repair material applied to the substrate concrete. The experimental variables were latex-cement ratios (5, 10, 15%), polymer(0.5%, 1%) and admixtures. The flow, air content, compressive strength, flexural strength were tested. Test results showed that compressive and flexural strength decreased by adding hydroxyethyl cellulose and increasing water-binder ratio. The compressive and flexural strength were increased when addition of defoamer.

  • PDF