• 제목/요약/키워드: Concrete Mix Design

검색결과 468건 처리시간 0.029초

초유동 콘크리트의 유동 성능에 미치는 배합요인의 영향 (Effect of Mix Proportion on the Flowing Characteristics of Super-flowing Concrete)

  • 노재호;한정호;백명종;이보근;박기청
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.115-120
    • /
    • 1994
  • Recently super-flowing concrete has been developed and used in many construction sites in Japan. It is believed that super-flowing concrete will change the construction method and contribute to the durability of concrete structures. In this study the effect of mix proportion on the flowing characteristics of super-flowing concrete was investigated to establish the mix design method. From the result we have found that self-compactability of super-flowing concrete was greatly affected by the unit gravel volume and paste/gravel volume ratio. Therefore the two parameters can be used in mix design of super flowing concrete.

  • PDF

F급 플라이애쉬의 혼입방법을 달리한 콘크리트 특성에 관한 실험적 연구 (A Study on the Properties of the Concrete Containing Fly-ash of Class F According to the 3 Different Mixture Design)

  • 문종욱;유택동;서치호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권2호
    • /
    • pp.191-198
    • /
    • 1999
  • The purpose of this study is investigating characteristics of the concrete containing Fly-ash according to different 4 mix design, that is, the first mix design is partial replace Fly-ash of cement, second is partial replace Fly-ash of cement and fine aggregate, third is partial replace Fly-ash of fine aggregate, fourth partial replacement of fine and coarse aggregate. For this purpose, selected test variables were water-binder ratio with two levels of 45%, 50%, and Fly-ash contents with four levels 0%, 10%, 20%, 30%, As the result of this study are as follow. 1) The result of mix design of a partial replacement of cement, the slump-flow value was appeared a promotive effect of viscosity. But in case of the over with Fly-ash 10% and the other mix design was not changed slump value. 2) The unit weight of the mixing rate with Fly-ash 0% was $1.875{\sim}1.884t/m^3$, the other mix design 10% over with Fly-ash was $1.846{\sim}1.615t/m^3$, the difference was appeared less about 15% than that. 3) In design, partial replace Fly-ash of fine aggregate, this compressive strength was appeared that the concrete age after 7 days was higher than in partial replacement of cement, therefore, the default of a concrete with Fly-ash, that is the earlier compressive strength was to lessen, was improved. 4) The thermal conductivity of the all mix design was $0.447{\sim}1.144kcal/mh^{\circ}C$, this value was as good as a lightweight aggregate concrete.

  • PDF

수화열 해석프로그램을 이용한 기초 매스콘크리트의 사전 배합선정 및 수화열 검토 (Study on Hydration Heat and Contact the Mix-Design of Foundation Mass Concrete Using Hydration Temperature Analysis Program)

  • 설준환;조만기;방홍순;김옥규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2019
  • In this research, considering the practical conditions at field, thermal cracking method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking. As future issues, based on the interpretation result value, we will select the optimal combination that is applied specifically to the actual site, and deeply analyze the correlation between the measured value and the analysis value through the combination and the test of the actual structure.

  • PDF

인공어초용 재생골재 콘크리트의 최적 배합설계 모델 (Optimal Mix Design Model of Recycled Aggregate Concrete for Artificial fishing Reefs)

  • 홍종현;김문훈;우광성;고성현
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.53-62
    • /
    • 2004
  • The Purpose of this study is to recycle the waste concrete, which is generated in huge quantities, from construction works. in order to achieve this goal, it is important to determine the compressive strength, workability, slump, and ultrasonic velocity of recycled aggregate concrete. Thus, several experiment parameters are considered, such as water-cement ratios, sand percentage, and fine aggregate composition ratios, in order to apply the recycled aggregate concrete to pre-cast artificial fishing reefs. From the results, it has been shown that the proper mix designs for reef concrete are W/C=45%, S/a=50%, SR50:SN50 in recycled sand and natural sand mix combination case, W/C=45%, S/a=50%, SC50:SN50 in crushed sand and natural sand mix combination case, W/C=45%, S/a=50%, SR50:SC50 in recycled sand and crushd sand mix combination case. Also, this study shows that the shape and surface roughness of fine aggregate particles have an effect on the strength, slump, ultrasonic velocity of tested concrete, and the compressive strength ratios of 7days' and 90days' curing ages of recycled aggregate concrete are about 70% and 110% of 28days' curing age.

경량 굵은골재 비중 및 혼합률에 따른 콘크리트의 자기충전성 (The self-compacting property of concrete as to specific gravity and mixing proportion of lightweight coarse aggregate)

  • 최연왕;김용직;최욱;이상호;조선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.747-750
    • /
    • 2004
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied. to . structures such as long-span bridge and high rise buildings. However, the lightweight concrete requires specific design mix method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the design mix method of high performance self-compacting concrete for the lightweight concrete. Therefore, this study introduces a production of self-compacting concrete, PF-modified and improved version of Nan-Su's design mix method of self-compacting concrete. Through a series of test mixes conducted during the study, the quality of the concrete at its fresh condition has been evaluated per the 2nd class rating standards of self-compacting concrete published by JSCE, especially focused in its fluidity, segregation resistance ability, and filling ability.

  • PDF

Self-compacting light-weight concrete; mix design and proportions

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.143-161
    • /
    • 2016
  • Utilization of mineral and chemical admixtures in concrete technology has led to changes in the formulation and mix design in recent decades, which has, in turn, made the concrete stronger and more durable. Lightweight concrete is an excellent solution in terms of decreasing the dead load of the structure, while self-compacting concrete eases the pouring and removes the construction problems. Combining the advantages of lightweight concrete and self-compacting concrete is a new and interesting research topic. Considering its light weight of structure and ease of placement, self-compacting lightweight concrete may be the answer to the increasing construction requirements of slender and more heavily reinforced structural elements. Twenty one laboratory experimental investigations published on the mix proportion, density and mechanical properties of lightweight self-compacting concrete from the last 12 years are analyzed in this study. The collected information is used to investigate the mix proportions including the chemical and mineral admixtures, light weight and normal weight aggregates, fillers, cement and water. Analyzed results are presented in terms of statistical expressions. It is very helpful for future research to choose the proper components with different ratios and curing conditions to attain the desired concrete grade according to the planned application.

최대밀도이론을 이용한 아스팔트 혼합물의 배합설계에 관한 연구 (The Study of Asphalt Concrete Mixture Design Using Maximum Density Theory)

  • 이승한;박현묘;정용욱;장석수;김장욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.525-528
    • /
    • 2005
  • This study determines the best composite grade to minimize the void of aggregate mixture based on the maximum density theory in an attempt to suggest a mix proportion method design for asphalt mixtures. Study results show that the grading curve with the maximum mass per unit capacity of each aggregate mixture satisfied the KS standards and the optimum AP content to meet the optimal asphalt mixture void rate of 4$\%$ was 5.7$\%$, less than the optimum AP content of 6.5$\%$ suggested in the Marshal mix proportion method design. At the same time, the asphalt mixture produced based upon the suggested mix proportion method had a flow value 17$\%$ lower than that of asphalt mixture produced according to the Marshal method, while its density was greater by 0.06$\~$0.09. This suggests that the introduced mix proportion method design helps to improve the shape flexibility and crack-resistance of asphalt concrete.

  • PDF

배합표에 의한 경기북부 레미콘의 압축강도 추정에 관한 연구 (The Estimation of Compressive Strength of Ready-Mixed Concrete In the North Territory of Gyeonggi on the base of Mix Design)

  • 임창훈;지남용;조홍범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.979-984
    • /
    • 2003
  • Quality control of ready-mixed concrete is most important in the production step because, the performance of hardened concrete is revealed due to ready-mixed concrete. Hardened concrete has several properties physically. Above all things compressive strength of concrete has a greate effect in the design of structures, analysis, and durability. Compressive strength is simple predicted by w/c up to date, but there are some limits because different compressive strengths can be revealed in the same w/c. Therefore this study contributes to the quality control of ready-mixed concrete through statistical analysis for the relation between mix factors in mix design and compressive strength, predictable equation for compressive strength.

  • PDF

라텍스개질 콘크리트의(LMC)의 강도특성 및 배합인자 결정방법 (Strength Properties and Determination Method of Mix Proportion Factor of Latex Modified Concrete)

  • 박성기;원종필;박찬기
    • 한국농공학회논문집
    • /
    • 제50권5호
    • /
    • pp.39-50
    • /
    • 2008
  • This study are decided the mix proportion method of latex modified concrete for agricultural concrete structures from the results of workability and strength test with mix proportion factor. For mix proportion factor, this study are selected the water-cement ratio, unit cement amount and latex content. Also, this study were performed the slump, compressive strength test and microstructure analysis using the scanning electron microscope(SEM). The strength and slump of LMC are dependent with unit cement amount, latex content, and water-cement ratio. Especially, the strength of LMC are not controlled by single mix proportion factor but effected by combined mix proportion factor. Microstructure investigation are showed the LMC are reduced the internal pore volume and enhanced the transition zone between cement paste and aggregate interface. This effect get by consist of latex films in the concrete. Also, this study were recommended the mix proportion method for LMC. These mix proportions method are estimated the mix design for satisfied the target performance which are applied the agricultural concrete structure.

최대 밀도 이론을 이용한 고성능콘크리트의 배합 설계 (Mix Design of High Performance Concrete Using Maximum Density Theory)

  • 이승한;정용욱
    • 콘크리트학회논문집
    • /
    • 제19권3호
    • /
    • pp.377-383
    • /
    • 2007
  • 최근 콘크리트의 품질과 구조물의 신뢰성을 향상시키기 위해서 고성능콘크리트의 현장 적용이 늘고 있다. 이러한 고성능콘크리트의 배합 설계 방법으로는 모르타르-굵은골재 2상계 배합 이론과 페이스트-골재 2상계 배합 이론이 있다. 이 중 모르타르-굵은골재 2상계 배합이론은 모르타르의 레올로지 특성을 부여함에 있어 반복적인 실험을 통해서 그 값을 결정해야 하는 문제점을 가지고 있다. 페이스트-골재 2상계 배합 이론은 최적 잔골재율과 단위결합재량과의 관계 및 콘크리트의 충전성을 확보할 수 있는 한계 골재 용적비 등이 고려되어 있지 않아 고성능콘크리트에의 적용 예가 없는 실정이다. 또한 이들 고성능콘크리트의 배합 설계 이론은 일반콘크리트와는 달리 유동성 및 충전성에 중점을 두고 있어 배합 설계에서 강도 특성을 고려하지 않고 있으며, 사용 재료의 단위량은 일반콘크리트와 같이 시행착오법으로 결정하고 있다. 이에 본 연구에서는 고성능콘크리트의 배합 설계에 최대 밀도 이론을 도입하여 사용 골재의 공극이 최소가 되는 최적 잔골재율 산정으로 배합 설계 시 시행착오를 줄이고, 강도를 고려한 최소 단위 결합재량의 결정으로 강도와 유동성을 동시에 만족할 수 있는 합리적이며 간편한 고성능콘크리트의 배합 설계법을 제안하고자 하였다. 연구 결과 본 연구에서 제안된 배합 설계법은 최소 공극을 갖는 최적 잔골재율 사용과 최소 단위 결합재량 이상의 결합재를 사용함으로써 시행착오를 줄일 수 있어 자기충전성을 갖는 고성능콘크리트를 간편하게 제조할 수 있다.