• 제목/요약/키워드: Concrete Mix Design

검색결과 468건 처리시간 0.027초

레디믹스드콘크리트의 조합설계안 분석보고 (An Analysis Report on the Mix Design of Ready Mixed Concrete)

  • 최민수;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.54-57
    • /
    • 1992
  • This report presents the survey findings on the proportioning of ready mixed, concrete mixtures. According to this report, the W/C ratio and S/A ratio, based upon the type 25-210-12, in mix proportion of ready mixed concrete are 53% and 45% respectively. The problems to be improved, coming out in this study, are (1)using the adequate quantity of cement (2) alternation of mix design cope with the change of kinds of aggregates (3)large standard error in the mix proportion.

  • PDF

Fractal equations to represent optimized grain size distributions used for concrete mix design

  • Sebsadji, Soumia K.;Chouicha, Kaddour
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.505-513
    • /
    • 2020
  • Grading of aggregate influences significantly almost all of the concrete performances. The purpose of this paper is to propose practicable equations that express the optimized total aggregate gradation, by weight or by number of particles in a concrete mix. The principle is based on the fractal feature of the grading of combined aggregate in a solid skeleton of concrete. Therefore, equations are derived based on the so-called fractal dimension of the grain size distribution of aggregates. Obtained model was then applied in such a way a correlation between some properties of the dry concrete mix and the fractal dimension of the aggregate gradation has been built. This demonstrates that the parameter fractal dimension is an efficacious tool to establish a unified model to study the solid phase of concrete in order to design aggregate gradation to meet certain requirements or even to predict some characteristics of the dry concrete mixture.

Genetic algorithm in mix proportion design of recycled aggregate concrete

  • Park, W.J.;Noguchi, T.;Lee, H.S.
    • Computers and Concrete
    • /
    • 제11권3호
    • /
    • pp.183-199
    • /
    • 2013
  • To select a most desired mix proportion that meets required performances according to the quality of recycled aggregate, a large number of experimental works must be carried out. This paper proposed a new design method for the mix proportion of recycled aggregate concrete to reduce the number of trial mixes. Genetic algorithm is adapted for the method, which has been an optimization technique to solve the multi-criteria problem through the simulated biological evolutionary process. Fitness functions for the required properties of concrete such as slump, density, strength, elastic modulus, carbonation resistance, price and carbon dioxide emission were developed based on statistical analysis on conventional data or adapted from various early studies. Then these fitness functions were applied in the genetic algorithm. As a result, several optimum mix proportions for recycled aggregate concrete that meets required performances were obtained.

신경망을 이용한 고강도 콘크리트 배합설계모델에 관한 연구 (A Study on Mix Design Model of High Strength Concrete using Neural Networks)

  • 이유진;이선관;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.253-254
    • /
    • 2012
  • The purpose of this study is to suggest and verify high-strength concrete mix design model applying neural network theory, in order to minimize effort and time wasted by using trial and error method utill now. There are 7 input and 2 output to predict mix design. 40 data of mix design were learned with back-propagation algorithm. Then they are repeatedly learned back-propagation in neural network theory. Also, to verify predicted model, we analyzed and compared value predicted from 60MPa mix design with value measured by actual compressive strength test.

  • PDF

고강도 콘크리트의 현장최적배합에 관한 연구 (The Study on the Optimum Mix Design of the High-Strength Concrete in Site)

  • 이상수;원철;김동석;안재현;박칠림
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.232-238
    • /
    • 1996
  • In this paper, the properties of high-strength concrete are described with respect to materials and mix conditions(water-cement ratio, chemical admixture, replacement of fly ash). As primary purposes of this study, the optimum mix design method of high-strength concrete to decrease unit cement contents is investigated, and the properties of fresh and hardened concretes are tested in terms of slump, air content and compressive strength. As results of this study, workability and strength development of the high-strength concrete depend on the water-cement ratio, replacement ratio of fly ash and dosage of the chemical admixture. The conditions which are proposed optimum mix design of the high-strength concrete show W/C 37%, S/A 42~45% and unit cement content 470~480kg/$\textrm{m}^3$. Based on the results, the applicability of high-strength concrete in site is clearly proved.

  • PDF

고성능콘크리트의 배합설계 (Mix Design of High Performance Concrete)

  • 정용욱;이승한;윤용호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.73-76
    • /
    • 2005
  • This study aims to suggest a simple and convenient design for a mix proportion method for high performance concrete by determining the optimum fine aggregate ratio and minimum binder content based on the maximum density theory. The mix design method introduced in this study adopted the optimum fine aggregate ratio with a minimum void and binder content higher than the minimum binder content level. The research results reveal that the method helps to reduce trial and error in the mixing process and is a convenient way of producing high performance concrete with self filler ability. In an experiment based on the mix proportion method, when aggregate with the fine aggregation ratio of 41$\%$ was used, the minimum binder content of high performance concrete was 470kg/$m^{3}$ and maximum aggregate capacity was $0.657m^{3}/m^{3}$. In addition, in mixing high performance concrete, the optimal slump flow to meet filler ability was 65$\pm$5cm, V load flow speed ranged from 0.5 to 1.5.

  • PDF

상하부 배합을 달리함에 의한 기초 매트 매스콘크리트의 수화열 균열저감 (Reducing Thermal Cracking of Mat-foundation Mass Concrete Applying Different Mix Designs for Upper and Lower Placement Lifts)

  • 한천구;김민호
    • 한국건축시공학회지
    • /
    • 제17권1호
    • /
    • pp.39-46
    • /
    • 2017
  • 최근 건축물의 기초는 구조체의 안정성과 연관하여 두꺼운 매스콘크리트 형태가 설계되어지고 있다. 그런데, 이와 같은 매트 매스콘크리트는 800mm 이상의 두꺼운 부재로 설계되는 경우가 많아짐에 따라 수화열에 의한 균열이 문제점으로 제기 되고 있다. 이에, 본 연구에서는 상 하부를 구분하여 타설하는 실무조건을 고려하여, 컴퓨터 프로그램상으로 하부와 상부의 최적치를 도출한 다음, 실구조체에 적용 해석치와 실측치간을 비교하므로서 효율적인 수화열균열 저감방안을 제안하고자 하였다. 그 결과, 상 하부 타설 콘크리트간의 저발열 배합정도를 고려한 수화발열량차 적용은 침하균열 방지 및 수화열 균열제어에 효과적인 것으로 밝혀졌다.

폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구 (Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions)

  • 조영국;김완기
    • 한국건축시공학회지
    • /
    • 제8권5호
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

Development of mix design method for geopolymer concrete

  • Parveen, Parveen;Singhal, Dhirendra
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.377-390
    • /
    • 2017
  • This study proposes a mix design method for geopolymer concrete (GPC) using low calcium fly ash and alccofine, with the focus on achieving the required compressive strength and workability at heat and ambient curing. Key factors identified and nine mixes with varied fly ash content (350, 375 and $400kg/m^3$) and different molarity (8, 12 and 16M) of NaOH solutions were prepared. The cubes prepared were cured at different temperatures ($27^{\circ}C$, $60^{\circ}C$ and $90^{\circ}C$) and tested for its compressive strength after 3, 7 and 28 days of curing. Fly ash content has been considered as the direct measure of workability and strength. The suggested mix design approach has been verified with the help of the example and targets well the requirements of fresh and hardened concrete.

고로슬래그시멘트를 사용한 콘크리트 배합설계에 관한 연구 (A Study of Concrete Mix Proportioning Design using Blast-furnace Slag Cement)

  • 백광섭;차태환;노재호;박연동;윤재환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.113-118
    • /
    • 1995
  • The purpose of this study is to suggest concrete mix proportioning design using Blast-furnace slag cement. The mix conditions are specified by concrete strength(180~400kg/$\textrm{cm}^2$), slump$(15\pm2cm)$m and air volume$(4.5\pm1%)$. From the result of concrete mix proportioning design using Blast-furnace slag cement, unit water content can be reduced by 3~8% comparing with OPC. The relationship between strength at 28days and cement water ratio is as follow. when blast-furnace slag cement is used: $\sigma_{28}$=304.OC/W-296.8. Super-plasticizer have to be used to get a slump of 15cm when water/cement ratio is less than 45%.

  • PDF